[Supporting Information]

An unprecedented [{Fe₅O₅(OH)₂(OAc)₂}₂{W₂O₂(OH)}] cluster sandwiched in the tetravacant tungstophosphate

Zongfei Yang, Yaping Wang, Zhijie Liang, Jingkun Lu, Pengtao Ma, Jingyang Niu,* and Jingping Wang*

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan (P.R. China) E-mail: jyniu@henu.edu.cn, jpwang@henu.edu.cn, Fax: (+86)371-23886876

CONTENTS

Section 1 Experimental section Section 2 Supplementary structural figures and tables Section 3 Additional measurements Section 4 References

Section 1 Experimental section

1.1 Materials and methods

 $K_{12}[H_2P_2W_{12}O_{48}]\cdot 24H_2O$ was synthetized using literature methods and successfully characterized by IR spectrum.^{S1} The others were commercially purchased and used without further purification. Infrared (IR) spectra of compound **1** was recorded on a Bruker Vertex 70 IR spectrometer from solid sample palletized with KBr in the range of 4000–450 cm⁻¹. Thermogravimetric analyses (TGA) were conducted using a Mettler–Toledo TGA/SDTA 851^e instrument under a flowing N₂ atmosphere with a heating rate of 10 °C min⁻¹ from 25 to 600 °C. Powder X-ray diffraction (PXRD) patterns were collected on a Bruker AXS D8 Advance diffractometer instrument with Cu K α radiation ($\lambda = 1.54056$ Å) at 293 K. ICP analyses were obtained with a PerkinElmer Optima 2000 ICP–OES spectrometer. C, H and N elemental analyses were performed on a Perkin–Elmer 2400–II CHNS/O analyzer. Magnetic properties of compound **1** were conducted on the Quantum Design SQUID magnetometer (MPMS–VSM) in the range of 1.8–300 K. UV spectra were obtained with a U-4100 spectrometer at room temperature. All electrospray-ionization mass spectrometry (ESI-MS) measurements were performed on an AB SCIEX Triple TOF 4600 spectrometer operating in negative ion mode and data was analyzed using the Peakview 2.0 software provided. The sample was prepared as described in the following and injected directly at a flow rate of 5 µL□min⁻¹ using a syringe pump.

1.2 Synthetic

 $K_{12}[H_2P_2W_{12}O_{48}] \cdot 24H_2O$ (0.82 g,0.21 mmol) was solubilized in a mixture of 4M NaOAc (6 mL) + H₂O (40 mL) with pH=7.79, and the pH value of the solution became 7.43. Then it was heated to 38°C. FeCl₃·6H₂O (0.11 g, 0.68 mmol) and PrCl₃·7H₂O (0.15g, 0.62 mmol) was added in turn giving an earthy yellow suspension (pH=5.98). Finally, the resulting mixture was heated to 95°C for 3h. After this period, the mixture was gradually cooled to room temperature, filtered and then was kept in air for slow evaporation at room temperature. The pH value of the filtrate after the reaction is 5.81. After two months, the reddish brown crystals of compound **1** were obtained. Yield: 0.31g (8.25% Based on W). IR (KBr-pellet): 1086, 1069, 1004, 943, 901, 808, 735, 672 cm⁻¹. Elemental analysis (%) calculated (found) for compound **1**: C 1.03 (1.04), H 1.09 (0.93), K 1.26 (1.28), Na 0.98 (1.00), P 1.33 (1.20), W 59.24 (58.56), Fe 5.98 (5.78).

Fig. S1 The experimental process.

1.3 X-ray Crystallography

Table S1. Crystal data and structure refinement for compound 1

Empirical formula	$C_8H_{101}Fe_{10}K_3Na_4O_{169}P_4W_{30}\\$			
Formula weight	9308.59			
Temperature/K	296.15			
Crystal system	triclinic			
Space group	P-1			
$a/ m \AA$	13.4742(6)			
$b/{ m \AA}$	26.3391(11)			
$c/{ m \AA}$	31.1489(13)			
$lpha/^{\circ}$	114.9234(6)			
$eta / ^{\circ}$	95.2570(7)			
$\gamma/^{\circ}$	96.9183(7)			
Volume/Å ³	9826.9(7)			
Ζ	2			
$\rho/g \cdot cm^{-3}$	3.078			
μ/mm^{-1}	18.389			
F(000)	7994.0			
Crystal size/mm ³	$0.33 \times 0.16 \times 0.14$			
Radiation	Mo K α ($\lambda = 0.71073$)			
range for data collection	3.116 to 50.198			
Index ranges	$\text{-15} \le h \le 16, \text{-25} \le k \le 31, \text{-37} \le l \le 35$			
Reflections collected	51307			
Independent reflections	$34716 [R_{int} = 0.0443, R_{sigma} = 0.0974]$			
Data/restraints/parameters	34716/2/1140			
Goodness-of-fit on F ²	1.024			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0572$, $wR_2 = 0.1449$			
Final R indexes [all data]	$R_1 = 0.0992$, $wR_2 = 0.1711$			

Section 2 Supplementary tables and structural figures

Atom	Bond	Atom	Bond	Atom	Bond	Atom	Bond
label	valence	label	valence	label	valence	label	valence
	Sum		Sum		Sum		Sum
01	2.031	O36	2.033	O69	1.640	O102	1.834
O2	2.091	O37	1.963	O70	1.966	O103	2.097
O3	1.795	O38	2.093	O71	2.058	O104	1.958
O4	1.837	O39	1.404	072	2.038	O105#	0.907
05	1.639	O40	2.084	073	2.096	O106	1.982
O6	1.877	O41	1.542	074	1.618	O107	1.923
07	1.754	O42	2.039	075	1.957	O108	2.029
08	2.061	O43	1.845	O76	1.528	O109	1.850
O10	1.699	O44	2.064	077	1.859	O110	2.042
011	1.793	O45	1.991	O78	1.891	0111	1.917
O12	1.653	O46	2.058	079	1.978	0112	1.829
O13	1.887	O47	2.008	O80	1.882	0113	1.864
O14	2.024	O48	1.810	O81	1.971	0114	2.041
O16	1.644	O49	1.861	082	1.829	0115	1.931
O17	1.867	O50	1.963	O83	2.051	0116	2.048
O18	1.907	O51	2.000	O84 [#]	1.027	O117	1.905
O19	1.592	O52	1.924	085	1.959	O118	1.979
O20	1.941	O53	1.751	O86	2.106	0119	1.865
O21	1.735	O54	1.914	087	2.069	O120	1.909
O22	1.520	O55	1.944	O88	1.841	O121	2.095
O23	1.657	O56	2.021	O89	1.911	O122	1.879
O24	2.095	O57	1.833	O90	1.906	0123	1.816
O25	2.039	O58	1.818	O91#	1.063	0124	1.852
O26	1.592	O59	1.570	O92	1.924	0125	2.104
O27	1.986	O60	1.793	O93	1.549	O126	1.779
O28	1.818	O61	1.676	O94	2.036	O127	2.185
O29	1.671	O62	2.104	O95#	1.016	O128	2.034
O30	1.749	O63	1.890	O96	1.869	O129	1.848
O31	2.064	O64	1.994	O97	1.963	O130	1.901
O32	1.764	O65	1.981	O98	1.895	O131 [#]	1.130
O33	1.985	O66	1.717	O99	1.880	O132	1.840
O34	1.923	O67	1.821	O100	1.826	O133	1.884
O35	1.635	O68	2.017	O101	1.834	O134	1.902

 Table S2 Bond valence sum calculations of all the oxygen atoms of compound 1.

#represents mono-pronated groups.

Fig. S2 Ball-and-stick representation of **1a** highlighting the pronated oxygen atoms. Color code: W, light blue balls; P, pink balls; Fe, yellow balls; C, gray-40%; O, red balls; OH, light green balls.

In order to determine the possible positions of the protons, bond valence sum (BVS) calculations are carried out on the all oxygen atoms in **1**. (Table S2, Fig. S2) The BVS calculations give the values of 1.03, 1.06, 1.02, 0.91, 1.13 for O84, O91, O95, O105, O131, respectively, which are relatively lower than those of other oxygen atoms in **1a** and further indicate they are monoprotonated.

Atom	Band	Atom	Band	Atom	Band	Atom	Band
label	valence	label	valence	label	valence	label	valence
	sum		sum		sum		sum
W1	6.146	W12	6.281	W23	6.029	Fe4	3.041
W2	6.175	W13	6.237	W24	6.391	Fe5	3.124
W3	6.426	W14	6.119	W25	5.876	Fe6	3.169
W4	5.999	W15	6.081	W26	6.334	Fe7	3.074
W5	6.424	W16	6.269	W27	6.330	Fe8	2.961
W6	5.831	W17	6.136	W28	6.261	Fe9	2.959
W7	6.175	W18	6.431	W29	6.057	Fe10	2.955
W8	6.084	W19	6.177	W30	6.357	P1	4.845
W9	6.171	W20	6.107	Fe1	3.089	P2	5.081
W10	6.249	W21	6.353	Fe2	3.002	P3	4.823
W11	6.035	W22	6.324	Fe3	3.041	P4	4.870

Table S3 Bond valence sum calculations of W, Fe and P atoms of compound 1.

Fig. S3 Polyhedral and ball-and-stick representations of the $[{Fe_5O_5(OH)_2(OAc)_2}_2 {W_2O_2(OH)}]$ cluster. Color code: WO₆ octahedra, light blue; FeO₆ octahedra, orange; W, light blue balls; P, pink balls; Fe, yellow balls; C, gray-40%; O, red balls.

Fig. S4 Polyhedral and ball-and-stick representations of $\{Fe_5\}.$

Fig. S5 View of supramolecular three-dimensional structure of 1 with potassium and sodium ions in a axis.

Fig. S6 The summary of the reported lacunary $\{PW_{12}O_{40}\}$ derivatives involving multinuclear ferric ions.^{S2}

Fig. S7 The summary of the reported lacunary $\{P_2W_{18}O_{62}\}$ derivatives involving multinuclear ferric ions.^{S3}

Section 3 Additional measurements

3.1 X-ray powder pattern

Fig. S8 X-ray powder patterns of compound 1.

The experimental XRPD patterns agree well with the simulated pattern thus confirms the phase purity in cluster **1**.

3.2 IR spectrum

Fig. S9 The IR spectra of 1.

3.3 TGA analysis

Fig. S10 Thermogravimetric curve of 1.

Fig. S11 The first derivative of the weight loss curve vs. T.

The thermal behavior of **1** has been investigated under nitrogen atmospheres between 30 and 600°C by thermogravimetric analysis (TGA). The TGA curve shows two-step weight losses. The first weight loss in the range of 30 - 200 °C giving a total loss of 6.90 % (calcd 6.85 %), attributed to the removal of 36 lattice water molecules. The second weight loss of 2.45 % (calcd 2.24 %), which correspond to the oxidation of acetate ligands.^{S4}

3.4 Magnetism

Fig. S12 The temperature dependence of $1/\chi_m$ for 1, and the red solid for 1 line represent the best-fit by the Curie-Weiss law.

3.5 UV-Vis spectra

Fig. S13 The time-dependent UV-Vis spectra of compound 1 in the mixed solution of CH_3CN and H_2O (V(H₂O) : V(CH₃CN) = 1 : 1).

3.6 ESI-MS

Fig. S14 Negative-mode ESI of compound 1 in a mixed solvent of CH_3CN and H_2O (V (H_2O)/V (CH_3CN) = 1:1).

Charge	Entry	Polyanion	Calculated <i>m/z</i>	Observed m/z
	1	$\{H_{11}Na_2K1a(H_2O)_3\}^{5-}$	1749.78	1749.50
	2	$\{H_{11}NaK_21a(H_2O)_5\}^{5-1}$	1760.21	1760.11
-5	3	${H_7Na_4K_31a}^{5-}$	1763.00	1763.25
	4	$\{H_8Na_4K_21a(H_2O)_3\}^{5-1}$	1766.20	1766.53
	1	$\{H_{13}1a(H_2O)\}^{6-1}$	1438.30	1438.32
	2	$\{H_{13}\mathbf{1a}(H_2O)_2\}^{6-1}$	1441.30	1441.31
-6	3	$\{H_{12}K1a\}^{6-1}$	1441.65	1441.64
	4	$\{H_{10}NaK_2\mathbf{1a}\}^{6-1}$	1451.66	1451.78
	1	$\{H_{12}\mathbf{1a}(H_2O)\}^{7-}$	1232.68	1232.76
-7	2	$\{H_{11}K1a(H_2O)_2\}^{7-1}$	1240.70	1240.45
	3	$\{H_9Na_2K1a(H_2O)\}^{7-1}$	1244.40	1244.65

 Table S4 Assignment of mass spectral data for compound 1.

Fig. S15 Selected simulated (blue) and experimental (black) negative-mode mass spectra of the isotopic envelopes for 1.

Section 4 References

S1 R. Contant, W. G.Klemperer and O. Yaghi O. Inorg. Synth. 1990, 27,104.

S2 (a) C. Pichon, A. Dolbecq, P. Mialane, J. Marrot, E. Rivière and F. Sécheresse, Dalton Trans. 2008, 7,

71. (b) V. Singh, Z. Chen, P. Ma, D. Zhang, M. G. B. Drew, J. Niu and J. Wang, Chem. - Eur. J. 2016, 22,

10983. (c) C. Pichon, A. Dolbecq, P. Mialane, J. Marrot, E. Rivière, M. Goral, M. Zynek, T. McCormac, S.

A. Borshch and E. Zueva, Chem. - Eur. J. 2008, 14, 3189.

S3 (a) B. Keita, I. M. Mbomekalle, L. Nadjo, T. M. Anderson and C. L. Hill, Inorg. Chem. 2004, 43, 3257.

(b) X. Zhang, T. M. Anderson, Q. Chen and C. L. Hill, Inorg. Chem. 2001, 40, 418. (c) C. P. Pradeep, D.-L.

Long, P. Kögerler and L. Cronin, Chem. Commun. 2007, 41, 4254. (d) P. I. Molina, H. N. Miras, D.-L.

Long and L. Cronin, Dalton Trans. 2014, 43, 5190. (e) B. Godin, Y.-G. Chen, J. Vaissermann, L.

Ruhlmann, M. Verdaguer and P. Gouzerh, Angew. Chem., Int. Ed. 2005, 44, 3072. (f) B. Godin, J.

Vaissermann, P. Herson, L. Ruhlmann, M. Verdaguer and P. Gouzerh, Chem. Commun. 2005, 45, 5624. (g)

S. S. Mal, M. H. Dickman, U. Kortz, A. M. Todea, A. Merca, H. Bögge, T. Glaser, A. Müller, S. Nellutla and N. Kaur, *Chem. – Eur. J.* 2008, 14, 1186.

S4 M. Han, Y. Niu, R. Wan, Q. Xu, J. Lu, P. Ma, C. Zhang, J. Niu and J.Wang, *Chem. – Eur. J.* 2018, **24**, 11059.