Supporting information

Two-dimensional Layered Lanthanide Diphosphonates: Synthesis, Structures and Sensing Properties towards Fe^{3+} and $Cr_2O_7^{2-}$

Xiaomin Hou,^a Chong-Chong Yan,^b Xiu-Ling Xu,^b Ai-Qin Liang^b, Zu-Wei Song^b and Si-Fu Tang^{*,b}

^aShandong Province Key Laboratory of Applied Mycology, College of Life Science, and ^bCollege of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China.

Donor-H···Acceptor	D - H	HA	DA	D - HA	
Compound 1					
O(1W)-H(1W)···O(6) \$1	0.85	2.55	3.0292	117	
O(1W)-H(1W)···O(2W) \$2	0.85	2.33	3.1325	157	
O(1W)-H(2W)···O(4)_\$1	0.85	2.06	2.9013	173	
O(2W)-H(3W)···O(3)_\$3	0.85	2.24	2.8919	134	
O(2W)-H(3W)···O(2)_\$4	0.85	2.28	2.9992	142	
O(2W)-H(4W)···O(5)_\$3	0.85	2.54	3.1550	130	
O(6)-H(6B)···O(2) _\$4	0.82	1.82	2.6229	167	
Compound 2					
O(1W)-H(1W)···O(6)_\$1	0.85	2.55	3.0292	117	
O(1W)-H(1W)···O(2W)_\$2	0.85	2.33	3.1325	157	
O(1W)-H(2W)···O(4)_\$1	0.85	2.06	2.9013	173	
O(2W)-H(3W)···O(3)_\$3	0.85	2.24	2.8919	134	
O(2W)-H(3W)····O(2)_\$4	0.85	2.28	2.9992	142	
O(2W)-H(4W)···O(5)_\$3	0.85	2.54	3.1550	130	
O(6)-H(6B)····O(2)_\$4	0.82	1.82	2.6229	167	
Compound 3					
O(1W)-H(1W)····O(3)_\$3	0.85	2.52	3.00(3)	116	
O(1W)-H(1W)····O(5)	0.85	2.16	2.79(2)	130	
O(2)-H(2B)···O(1W)_\$4	0.82	1.52	2.35(2)	178	
O(2W)-H(3W)···O(6)_\$1	0.85	2.16	2.99(3)	164	
O(2W)-H(3W)····O(4)_\$2	0.85	2.06	2.40(2)	103	
O(2W)-H(4W)····O(4)_\$2	0.85	1.77	2.40(2)	129	
Compound 4					
O(1W)-H(1W)···O(6)_\$1	0.84	2.54	3.0108	117	
O(1W)-H(1W)-O(2W) \$2	0.84	2.35	3.1376	157	
O(1W)-H(2W)···O(4) \$1	0.84	2.12	2.9526	171	

Table S1. Hydrogen bonds in compounds 1-4.

O(2W)-H(3W)···O(3)_\$3	0.84	2.59	3.0108	112
O(2W)-H(3W)···O(2)_\$4	0.84	2.25	2.8778	132
O(2W)-H(4W)···O(5)_\$3	0.84	2.23	2.9423	142
O(6)-H(6B)···O(2)_\$4	0.84	2.52	3.1466	132
O(1W)-H(1W)···O(6)_\$1	0.82	1.82	2.6317	168

Symmetry transformations used to generate equivalent atoms:

For **1**, **2** and **4**: \$1 = x, 1+y, z; \$2 = 1-x, 1/2+y, 3/2-z; \$3 = 1-x, -y, 1-z; \$4 = x, 1/2-y, 1/2+z

For **3**: \$1 =1+x, y, z; \$2 =1-x, -1/2+y, -z; \$3 =x, -1+y, z; \$4 =x, 1+y, z.

Table S2. $\pi \cdots \pi$ interactions in compounds 1-4 with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0Deg.

Cg(I)···Cg(J)	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp
Compound 1						
Cg(1) - Cg(1) - 1	5.7061	37	41.5	73.5	1.6181	4.2758
Compound 2						
Cg(1) - Cg(1) - 1	5.7228	37	41.8	73.5	-1.6250	-4.2662
Compound 3						
$Cg(1) \cdots Cg(1) _{1}$	5.747(14)	36	42.2	73.1	-1.674(9)	-4.259(9)
Compound 4						
$Cg(1) \cdots Cg(1) _{1}$	5.7515	36	42.8	73.4	-1.6435	-4.2186

Cg(I) = Plane number I (= ring number in () above)

Alpha = Dihedral Angle between Planes I and J (Deg)

Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane I (Deg)

Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J (Deg)

Cg-Cg = Distance between ring Centroids (Ang.)

 $CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)$

 $CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.)$

Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang).

6-Membered Ring (1): C(1) \rightarrow C(2) \rightarrow C(3) \rightarrow C(4) \rightarrow C(5) \rightarrow C(6) \rightarrow

Symmetry transformations used to generate equivalent atoms:

For 1: 1=1-x, -1/2+y, 1/2-z;

For **2** and **4**: 1=-x, 1/2+y, 1/2-z;

For **3**: 1 = -x, -1/2 + y, -1 - z.

Table S3. O-H··· π interactions in compounds 1-4 with H···Cg < 3.0 Å and Gamma < 30.0 Deg.

$X-H(I)\cdots Cg(J)$	H…Cg	H-Perp	Gamma	X-H…Cg	X⋯Cg	X-H,Pi
Compound 1						
O(2W) - H(4W) - Cg(1)	2.49	-2.44	11.57	153	3.2696	74
Compound 2						
O(2W) -H(4W)····Cg(1)_\$1	2.70	2.58	17.33	130	3.3136	57
Compound 4						
O(2W) -H(4W)···Cg(1)_\$1	2.79	2.64	18.79	130	3.3902	59

Cg(J) = Center of gravity of ring J (Plane number above)

H-Perp = Perpendicular distance of H to ring plane J Gamma = Angle between Cg-H vector and ring J normal

 $X-H\cdots Cg = X-H-Cg$ angle (degrees)

 $X \cdots Cg$ = Distance of X to Cg (Angstrom)

X-H, Pi = Angle of the X-H bond with the Pi-plane

Symmetry transformations used to generate equivalent atoms:

For **1**: \$1= -X, 1-Y, -Z;

For **2** and **4**: \$1= 1-X, -Y, 1-Z.

Figure S1. Comparison of simulated and experimental PXRD pattern of compound 1.

Figure S2. Comparison of simulated and experimental PXRD pattern of compound 2.

Figure S3. Comparison of the PXRD patterns of dry samples compound 3.

Figure S4. Comparison of simulated and experimental PXRD pattern of compound 4.

Figure S5. Comparison of the PXRD patterns of dry samples compound 3.

Figure S7. IR spectra of compound **3** recovered from H_2O , 10^{-3} M Fe(NO₃)₃ and 10^{-3} K₂Cr₂O₇.

Figure S8. The coordination environments of the bisphosphonate ligand and Tb(III) ions in **3** (thermal ellipsoids are given at 30% probability). A: 1-x, -0.5+y, -z; B: 1+x, y, z; C: 1-x, 0.5+y, -z; D: -1+x, y, z.

(b)

Figure S9. Two-dimensional layer in *ab*-plane (a) and three-dimensional packing structure of compound **3** viewing along *b*-axis (b). The TbO₇ and $-CPO_3$ polyhedrons are shaded in green and purple, respectively.

Table S4. Detection limit calculation of compound **3** toward Fe³⁺ and $Cr_2O_7^{2-}$.

Blank samples	Luminescence intensity
Test 1	2275
Test 2	2270

Test 3	2288		
Test 4	2269		
Test 5	2271		
Standard deviation (σ)	7.83		
Detection limit towards Fe ³⁺			
Slope (S)	30348.026 mM ⁻¹		
Detection limit $(3\sigma/S)$	0.000774 mM		
Detection limit towards $Cr_2O_7^{2-}$			
Slope (S)	36441.024 M ⁻¹		
Detection limit $(3\sigma/S)$	0.000665 mM		

Figure S10. Emission spectra of the suspensions of compound **3** in different solvents under excitation of 354 nm.

Figure S11. UV-Vis absorption spectra of $Fe(NO_3)_3$, $K_2Cr_2O_7$ solutions, H_4L and compound **3**.