Supplementary Materials

Multifunctional materials based on double-perovskite organic-inorganic hybrid (CH₃NH₃)₂[KCr(CN)₆] showing switchable dielectric, magnetic and semiconducting behaviour

M. Rok^{ab+}, M. Moskwa^a, M. Działowa^a, A. Bieńko^a, C. Rajnák^c, R. Boča^c, G. Bator^a

^aFaculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
^bFrank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot–Curie 6, 141-980 Dubna, Russia
^c Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
[†]e-mail: magdalena.rok@chem.uni.wroc.pl

CAPTIONS OF FIGURES

Fig. S1. Temperature dependence of the AC susceptibility components for MACr at $B_{DC} = 0.35$ T for a	ł
set of frequencies f = 0.1 – 1500 Hz.	5
Fig. S2. Argand diagram (left) and the Arrhenius-like plot for MACr based upon the fitted data	6

CAPTIONS OF TABLES

Table S1. Crystal data and structure refinement for MACr.	.2
Table S2. Geometric parameters (Å, °) for MACr.	.3
Table S3. Selected bond lengths and the shortest M…K distances (Å) (where M: Cr ³⁺ , Co ³⁺ , Fe ³⁺) for	
MACr, MACo ² , MAFe ¹	.4
Table S4. Hydrogen-bond geometry (Å, °) for MACr	.4
Table S5. Temperature dependence of AC susceptibility parameters for MACr at $B_{DC} = 0.35$ T	.5

Compound:	MACr
Formula	(CH ₃ NH ₃) ₂ [KCr(CN) ₆]
Formula weight	311.36
Т (К)	300(2)
λ[Å]	0.71073
Crystal system	monoclinic
Space group	C2/c
<i>a</i> (Å)	13.995(3)
b (Å)	8.052(4)
<i>c</i> (Å)	13.996(4)
β (°)	108.68(2)
V (Å ³)	1494.1(9)
Ζ	4
μ (Mo K _α) (mm⁻¹)	1.04
Crystal size (mm)	0.47×0.27×0.15
heta Range (°)	3.1 to 36.8
	16 ≤ h ≤ 16
Index ranges	$-9 \le k \le 9$
	-16 ≤ ≤ 13
Absorption	analytical
correction	unarytical
T _{min} , T _{max}	0.736, 0.880
No. of measured,	
independent and	7450, 1388, 1328
observed	, 100, 1000, 1020
$[l > 2\sigma(l)]$ reflections	
R _{int}	0.051
Goodness-of-fit on	1.13
F ²	
Final R_1 , wR_2 indices	$R_1 = 0.034,$
$[F^2 > 2\sigma(F^2)]$	$wR_2 = 0.085$

Table S1. Crystal data and structure refinement for MACr.

Table S2	Geometric	narameters	(Å °)	for MAC	r
Table 32.	Geometric	parameters	(A,)	IUI IVIACI	•

(CH ₃ NH ₃)⁺	
N4—C4	1.465(4)
[KCr(CN) ₆] ²⁻	
Cr1-C1	2.0683(19)
Cr1-C1 ^{vi}	2.0683(19)
Cr1—C2 ^{vi}	2.0737(18)
Cr1—C2	2.0738(18)
Cr1—C3 ^{vi}	2.0831(19)
Cr1—C3	2.0831(19)
N1-C1	1.142(3)
N1—K1 ^{viii}	2.831(2)
N2—C2	1.144(2)
N3—C3	1.143(2)
N3—K1 ^{vii}	2.8935(18)
K1—N1 ⁱ	2.831(2)
K1—N1 ⁱⁱ	2.831(2)
K1—N2	2.8680(18)
K1—N2 ⁱⁱⁱ	2.8681(18)
K1—N3 ^{iv}	2.8935(19)
K1—N3 ^v	2.8935(18)
C1-Cr1-C1 ^{vi}	180.0
C1-Cr1-C2 ^{vi}	90.04(7)
C1-Cr1-C2	89.96(7)
C1 ^{vi} —Cr1—C2	90.04(7)
C1 ^{vi} —Cr1—C2 ^{vi}	89.96(7)
C1-Cr1-C3	90.82(8)
C1-Cr1-C3 ^{vi}	89.18(8)
C1 ^{vi} —Cr1—C3	89.18(8)
C1 ^{vi} —Cr1—C3 ^{vi}	90.82(8)
C2 ^{vi} —Cr1—C2	180.0
C2-Cr1-C3	89.17(7)
C2 ^{vi} —Cr1—C3	90.83(7)
C3 ^{vi} —Cr1—C3	180.0
C2 ^{vi} —Cr1—C3 ^{vi}	89.17(7)
C1-N1-K1 ^{VIII}	130.56(16)
C2—N2—K1	138.01(14)
C3—N3—K1 ^v	152.88(16)
N1-C1-Cr1	1/8.41(18)
N2-C2-Cr1	1/9.00(1/)
N3-C3-Cr1	1/7.62(16)
	90.83(7)
N1'-K1-N1"	87.41(11)
N1'-K1-N2	97.28(6)
	75.91(6)
	75.91(6)
	97.28(6)
	152.04(6)
	03.U/(/)
N1 _K1_N3	03.U/(/) 152.04/6)
	170 74(0)
	1/U./4(ð)
	100.87(5)
	78.40(5)
	106 97/E)
$N3^{iv}$ K1 $N3^{v}$	112 06(0)

Symmetry codes: (i) x-1/2, y-1/2, z; (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x, y, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) x-1/2, y+1/2, z; (vi) -x+1/2, -y+1/2, -z; (vii) x+1/2, y-1/2, z; (viii) x+1/2, y+1/2, z.

	M—C	K—N	C—N	М∙∙∙К	M—C	K—N	C—N	м…к	
		LT – phase				HT – p	hase		
	2.068(3)	2.831(2)	1.142(3)						
MACr	2.074(2)	2.868(2)	1.143(2)	5.695(2)					
	2.083(2)	2.894(2)	1.144(2)						
	1.938(2)	2.823(2)	1.147(2)						
MAFe ¹	1.937(2)	2.854(2)	1.151(2)	5.414(5)	1.930(2)	2.832(2)	1.083(2)	5.739(8)	
	1.948(2)	2.889(2)	1.151(2)						
	1.897(2)	2.819(2)	1.153(2)						
MACo ²	1.901(2)	2.854(2)	1.153(2)	5.536(2)	1.862(11)	2.716(12)	1.116(16)	5.694(6)	
	1.907(3)	2.885(2)	1.154(2)						

Table S3. Selected bond lengths and the shortest M…K distances (Å) (where M: Cr^{3+} , Co^{3+} , Fe^{3+}) for **MACr**, **MACo**², **MAFe**¹.

Table S4. Hydrogen-bond geometry (Å, °) for **MACr**.

D—H…A	D—H	Н…А	D…A	D—H···A
N4—H4 <i>C</i> …N1	0.90(3)	2.13(3)	2.952(3)	152(3)
N4—H4A…N2 ^{ix}	0.79(3)	2.24(3)	2.968(3)	154(3)
N4—H4 <i>B</i> …N3 ^{iv}	0.83(4)	2.43(4)	3.155(3)	146(3)

Symmetry codes: (iv) -*x*+1/2, *y*+1/2, -*z*+1/2; (ix) *x*+1/2, -*y*+1/2, *z*+1/2.

Fig. S1. Temperature dependence of the AC susceptibility components for MACr at $B_{DC} = 0.35$ T for a set of frequencies f = 0.1 – 1500 Hz.

Table S5. Temperature	dependence of	AC susceptibility parameters f	or MACr at B _{DC} = 0.35 T.
------------------------------	---------------	--------------------------------	---

T/K	$R(\chi')$	$R(\chi'')$	χs	Xlf	$lpha_{LF}$	$ au_{LF}$	<i>Х</i> нғ	$lpha_{HF}$	$ au_{HF}$	$X_{\rm LF}$	$x_{\rm HF}$
	/%	/%				/ s			/10 ⁻³ s		
1.8	0.75	4.9	4.5(1)	7.3(11)	.32(13)	3.6(27)	11.0(10)	.39(2)	5.2(5)	.42	.58
2.0	0.40	2.6	4.0(1)	6.2(2)	.22(4)	1.39(13)	9.6(1)	.41(1)	5.0(2)	.40	.60
2.2	0.33	1.7	3.7(1)	5.6(1)	.18(3)	0.98(4)	8.8(1)	.43(1)	4.9(2)	.38	.62
2.4	0.17	1.5	3.4(1)	4.9(1)	.10(1)	0.74(1)	8.0(1)	.46(1)	4.8(1)	.33	.67
2.6	0.17	1.9	3.3(1)	4.4(1)	.03(1)	0.61(1)	7.4(1)	.48(1)	4.6(1)	.27	.73
2.8	0.18	2.1	3.2(1)	4.1(1)	.01(1)	0.55(1)	7.0(1)	.48(1)	4.4(1)	.25	.75
3.2	0.24	2.8	3.2(1)	3.8(1)	.00	0.44(1)	6.2(1)	.50(1)	4.4(2)	.21	.79
3.6	0.30	3.7	3.2(1)	3.6(1)	.00	0.39(2)	5.6(1)	.52(1)	4.9(5)	.18	.82
4.0	0.27	4.7	3.3(1)	3.6(1)	.00	0.39(2)	5.1(1)	.51(2)	5.1(6)	.17	.83
4.4	0.19	4.9	3.4(1)	3.6(1)	.00	0.41(3)	4.7(1)	.53(2)	4.9(6)	.16	.84
5.0	0.15	6.6	3.4(1)	3.5(4)	.00	0.46(5)	4.1(7)	.53(3)	6.2(10)	.16	.84
5.6	0.17	11	3.3(1)	3.4(5)	.00	0.55(12)	3.8(1)	.55(5)	7.1(23)	.14	.86
6.2	0.13	16	3.1(1)	3.2(1)	.01	0.90(50)	3.4(1)	.57(6)	9.3(42)	.18	.82

^a Obtained by a two-set Debye model; χ in units of 10⁻⁶ m³ mol⁻¹.

Fig. S2. Argand diagram (left) and the Arrhenius-like plot for **MACr** based upon the fitted data.