Electronic Supplementary Information

Ionic liquids with polychloride anions as effective oxidants for the

dissolution of UO₂

Aining Yao,^{a,b} Feng Qu,^a Yu Liu,^a Guangyin Qu,^a Hao Lin,^a Shaowen Hu,^a Xiangyun Wang^a and Taiwei Chu*^a

^a Radiochemistry and Radiation, Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

^b Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.

* Corresponding author: Taiwei Chu. E-mail: twchu@pku.edu.cn.

Fig. S1 Mass gain of [Pmim]Cl IL with the addition of chlorine gas as a function of time.

Fig. S2 Mass gain of [Pnmim]Cl, [Hmim]Cl and [Omim]Cl IL with the addition of chlorine gas as a function of time (■ [Pnmim]Cl, ● [Hmim]Cl and ▲[Omim]Cl).

Table S1 The amount of Cl_2 uptake (mmol) after reaching equilibrium in the mixed ILs with

different molar ratios of [Bmim]Cl versus [Bmim][Tf ₂ N].					
molar ratio ([Bmim]Cl vs. [Bmim][Tf ₂ N])	1:0	1:1	1:2	1:4	0:1
[Bmim]Cl (mmol)	17.17	5.05	2.96	1.62	0
[Bmim][Tf ₂ N] (mmol)	0	5.05	5.92	6.48	7.15
Cl ₂ uptake (mmol)	31.05	7.54	4.92	3.35	1.14
Cl2 solubility in [Bmim][Tf2N] (mmol)	—	0.81	0.94	1.03	1.14
molar ratio of [Cl] _{Cl} /[Bmim]Cl	4.62	3.67	3.68	3.85	0
molar ratio of [Cl]t/[Bmim]Cl	4.62	3.99	4.32	5.13	—

 $[Cl]_t$ means, the mole amount of Cl resulting from all the amount of chlorine gas absorbed by the IL mixture and [Bmim]Cl. $[Cl]_{Cl}$ means, the mole amount of Cl resulting from Cl₂ soluble in [Bmim]Cl (all the amount of chlorine gas absorbed by the IL mixture, subtracts, that from a part of Cl₂ soluble in $[Bmim][Tf_2N]$) and [Bmim]Cl.

Fig. S3 Different molar ratio mixed ILs of [Bmim]Cl and [Bmim][Tf₂N] (1 : 0, 1 : 1, 1 : 2, 1 : 4 and 0 : 1 from left to right) before and after adding Cl₂.

Fig. S4 IR spectra of (a) [Bmim][Tf₂N], (b) passing Cl₂ into [Bmim][Tf₂N] for one hour,(c) passing Cl₂ into [Bmim]Cl for one hour, and (d) [Bmim]Cl.

Fig. S5 Raman spectra of (a) [Bmim]Cl, (b) passing Cl_2 into [Bmim]Cl for one hour, (c)

 $[Bmim][Tf_2N] \mbox{ and } (d) \mbox{ passing } Cl_2 \mbox{ into } [Bmim][Tf_2N] \mbox{ for one hour.}$

Fig. S6 ¹H NMR spectra of: the crystal obtained, the UO₂ reaction solution and the pure unreacted ionic liquid mixtures (from top to bottom).

Fig. S7 ¹H NMR spectra of: (a) the unreacted ionic liquid mixtures, (b) the UO_2 reaction solution after bubbling chlorine gas, and (c) the expanded NMR spectra of (b).

Fig. S8 Photograph of the 0.5 mmol of UO_2 dissolution in the mixed ILs using two different methods at a certain time (a, adding UO_2 into the synthesized polychloride ILs, and b, adding Cl_2 into the UO_2 reaction mixture filled with [Bmim]Cl and [Bmim][Tf₂N]).

Fig. S9 % UO₂ dissolved in the mixed IL of [Bmim]Cl and [Bmim][Tf₂N] at room temperature as a function of duration Cl₂ time (0.3 mmol UO₂, 1.28 mmol [Bmim]Cl and 3.5 mmol [Bmim][Tf₂N]).

Fig. S10 UV-visible absorption spectra for (a) the unreacted IL mixture, and (b) UO₂ reaction solution in the mixed IL.

Fig. S11 ATR-IR spectra for (a) UO₂ reaction solution in the mixed IL, and (b) the unreacted IL mixture.

The water effect for the dissolution of Gd₂O₃ in the mixture of [Bmim]Cl and [Bmim][Tf₂N]

Gadolinium(III) oxide (0.395 g) was separately added to the system from A to C (Table S2) at room temperature for two hours by bubbling dry chlorine gas into the reaction system, and H₂O in Table S2 means the artificial additional ultrapure water. Before the experiments, all the ILs were kept in a vacuum drying oven at 70 °C for 24 h. The solution was centrifuged (5500 rpm, 5 min), the liquid was decanted, and 0.3 mL of the liquid was taken out and analyzed for its metal content by ICP-AES.

System ID	Component	dissolved Gd ₂ O ₃ /mg
	0.517g [Bmim]Cl,	0.78
А	2.48 g [Bmim][Tf ₂ N]	
В	$A+0.022g\ \mathrm{H_2O}$	29.8
С	A + 0.171g H ₂ O	121.5

Table S2 The dissolution of Gd₂O₃ in the system of [Bmim]Cl and [Bmim][Tf₂N] (3 g, molar ratio:1/2).

It could be found that almost $0.78 \text{ mg } \text{Gd}_2\text{O}_3$ dissolved in the system A, and the water amounted to 1670 ppm after the dissolution experiment. The dissolution amount of Gd_2O_3 increased with the artificial water addition into the reaction system, 29.8 mg in system B and 121.5 mg in system C. It suggested that water made the chlorine gas into HCl and HClO acid, thus producing reactive protons and leading to the

dissolution of Gd_2O_3 . It has been reported that the availability of reactive protons is essential for the dissolution of metal oxides in ionic liquids.¹⁻⁴

Compound	[Bmim]2[UO2Cl4]		
Chemical formula	$C_{16}H_{30}Cl_4N_4O_2U$		
Т(К)	293(2)		
Formula weight	690.27		
Crystal system	monoclinic		
Space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)		
<i>a</i> , Å	8.5021(2)		
b, Å	17.4789(3)		
<i>c,</i> Å	10.3866(2)		
β , deg	125.2340(10)		
<i>V</i> , Å ³	1260.75(4)		
Ζ	2		
D_c , g/cm ³	1.818		
μ (Mo K α), mm ⁻¹	6.878		
<i>F</i> (000)	660		
Crystal size, mm ³	$0.20 \times 0.18 \times 0.05$		
Tmin, Tmax	0.316, 0.721		
θ min, θ max, deg	3.42, 27.50		
no. total reflns.	18214		
no. uniq. reflns. (Rint)	2895 (0.0473)		
no. obs. $[I \ge 2\sigma(I)]$	1967		
no. params	124		
$R_1,^a w R_2^b [I \ge 2\sigma(I)]$	0.0247, 0.0577		
R_{1} , ^{<i>a</i>} wR_{2}^{b} (all data)	0.0474, 0 .0623		
GOF	0.988		
$\Delta \rho$, e/Å ^{3c}	0.420, -0.826		
max. and mean Δ/σ^d	0.000, 0.000		

Table S3 Crystallographic data for [Bmim]₂[UO₂Cl₄].

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|$. ${}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}] \Sigma w (F_{o}^{2})^{2}]^{1/2}$. ^cMaximum and minimum residual electron density. ^dMaximum and mean shift/sigma.

Fig. S12 The polarizing optical microscopy photos of [Bmim]₂[UO₂Cl₄].

Fig. S13 Experimental (red) and simulated (black) PXRD patterns of [Bmim]₂[UO₂Cl₄].

Fig. S14 ORTEP drawing of the $[Bmim]^+$ cation and the $[UO_2Cl_4]^{2-}$ anion. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Fig. S15 Representation of C-H···O and C-H···Cl interactions in the solid compound

[Bmim]₂[UO₂Cl₄].

Fig. S16 IR spectra of the U-crystal obtained from the dissolved IL mixture at room temperature.

Reference:

[1] I. Billard, C. Gaillard and C. Hennig, Dalton Trans., 2007, 4214-4221.

- [2] P. Nockemann, B. Thijs, S. Pittois, J. Thoen, C. Glorieux, K. Van Hecke, L. Van Meervelt, B. Kirchner and K. Binnemans, J. Phys. Chem. B, 2006, 110, 20978-20992.
- [3] P. Nockemann, R. Van Deun, B. Thijs, D. Huys, E. Vanecht, K. Van Hecke, L. Van Meervelt and K. Binnemans, *Inorg. Chem.*, 2010, 49, 3351-3360.
- [4] S. Wellens, T. Vander Hoogerstraete, C. Möller, B. Thijs, J. Luyten and K. Binnemans, *Hydrometallurgy*, 2014, 114, 27-33.