Supplementary Information for:

Structure-property-reactivity studies on dithiaphospholes

Darren M. C. Ould,^a Thao T. P. Tran,^b Jeremy M. Rawson^{*b} and Rebecca L. Melen^{*a}

^aSchool of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K.

^bDepartment of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada

Contents

S1.1 Single crystal X-ray diffraction experimental	2
S1.2 Solid-state structures	4
S1.3 Refinement data.	13
S2 Computational studies	16
S2.1 Computational experimental	16
S2.2 NBO analysis	17
S2.3 Geometry optimised coordinates	21
S3 References	24
S4 NMR spectra	25
S4.1 NMR spectra of phosphole/phosphenium compounds	25
S4.2 NMR spectra of hydroborated aldehydes	83

S1 Single crystal X-ray diffraction

S1.1 Single crystal X-ray diffraction experimental

Single crystals of **1a–1c** and **2a–2c** were grown in a glovebox under a dinitrogen atmosphere. Crystals of **3b** were obtained by slow evaporation of a saturated CH_2Cl_2 solution under N_2 . Crystals of **4** were grown by slow evaporation of a saturated toluene solution. Crystals of **1e** were formed by storing a saturated solution at –20 °C.

Crystallographic studies on **1a–1c** and **2a–2c** were undertaken on single crystal mounted in paratone and studied on an Agilent SuperNova Dual Atlas three-circle diffractometer using Mo- or Cu-K α radiation and a CCD detector. Measurements were taken at 150(2) K with temperatures maintained using an Oxford Cryostream. Data were collected and integrated and data corrected for absorption using a numerical absorption correction based on Gaussian integration over a multifaceted crystal model within CrysAlisPro.¹ The structures were solved by direct methods and refined against F^2 within SHELXL-2013.²

Crystallographic studies on **3b**, **4** and **1e** were made on a Bruker APEX diffractometer on crystals mounted in paratone oil using Mo-K α radiation and a CCD detector. Measurements were recorded at 153(2), 173(2) and 150(2) K respectively with temperatures maintained using an Oxford Cryostream low temperature device. Data for **3b** and **1e** were integrated using SAINT³ and an absorption correction applied using Sadabs.⁴ Data for **4** were integrated as a two component non-merohedral twin using SAINT³ and an absorption correction applied using Twinabs.⁵ The structures were solved by direct methods and refined against F^2 with SHELXL 2017/1.⁶

For the structure of **3b**, initial indexing afforded a monoclinic cell with a = 8.0083, b = 9.2891, c = 37.1382, $\beta = 96.153$. An initial solution in P2(1) was achieved with DIRDIF⁷ and Z' = 4. Residual light atoms were located in subsequent different maps. However refinement stalled at R1 = 18% with many Fo > Fc indicative of twinning. TWINROTMAT within PLATON⁷ identified a twin (TWIN -1 0 0 0 -1 0 1 0 1) and the R value plunged to 5%. However the C atoms failed to refine anisotropically (many NPD) and further examination using ADDSYM revealed a missing inversion centre and a smaller cell. Transformation to the smaller cell setting and generation of an HKLF5 format file provided a satisfactory solution with Z' = 1 which refined to R1 < 5%.

For the structure of **1e**, the data reported were the best from multiple crystal examined which were persistently twinned. Structure initially solved in P-1 with one molecule in the asymmetric unit but large residuals. ADDSYM within PLATON⁷ identified the higher symmetry P-3 space group and refinement improved but stalled at R1 = 13%. TWINROTMAT identified an inversion twin and led to a

further reduction in R1 by 4%. Although the residuals are still high the connectivity is clear and the refinement was stable and esds on geometric parameters small with molecular connectivity consistent with other analytical data.

The structures have been deposited with the Cambridge Structural Database (CCDC deposition numbers 1951113-1951115, 1951125-1951127, 1951132, 1430534 and 824860). These can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

S1.2 Solid-state structures

Figure S1.2.1 Solid-state structure of 2-chloro-5-methylbenzo-1,3,2-dithiaphosphole (1a)

Figure S1.2.2 Solid-state structure of 2-bromo-5-methylbenzo-1,3,2-dithiaphosphole (1b)

Figure S1.2.3 Solid-state structure of 2-iodo-5-methylbenzo-1,3,2-dithiaphosphole (1c)

Figure S1.2.4 Solid-state structure of 2-chlorobenzo-1,3,2-dithiaphosphole (2a)

Figure S1.2.5 Solid-state structure of 2-bromobenzo-1,3,2-dithiaphosphole (2b)

Figure S1.2.6 Solid-state structure of 2-iodobenzo-1,3,2-dithiaphosphole (2c)

Figure S1.2.7 Solid-state structure of paddlewheel tris(5-methylbenzo-1,3,2-dithiaphosphol-2-yl)amine (MeC₆H₃S₂P)₃N (**1e**)

Figure S1.2.8 Solid-state structure of 5-methylbenzo-1,3,2-dithiaphosphenium tetrachlorogallate (3b)

Figure S1.2.9 Solid-state structure of 1,3,2-benzodithiaphosphoryl dimer (4)

S1.3 Refinement data

Compound	1a	1b	1c
Empirical formula	C ₇ H ₆ CIPS ₂	C ₇ H ₆ BrPS ₂	C ₇ H ₆ IPS ₂
Formula Weight	220.66	265.12	312.11
Temperature/ K	150(2)	150(2)	150(2)
Wavelength /Å	1.54178	0.71073	0.71073
Crystal System	Monoclinic	Monoclinic	Monoclinic
Space Group	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c
a/Å	7.9254(2)	8.1065(5)	9.6874(7)
b/Å	14.9999(5)	8.4575(5)	12.2726(9)
<i>c</i> /Å	7.5269(2)	13.4463(8)	8.3795(7)
α/°	90	90	90
β/°	91.739(3)	93.273(6)	102.702(8)
γ/°	90	90	90
Volume/Å ³	894.38(4)	920.39(9)	971.85(13)
Z	4	4	4
Density (calc)/ g cm ⁻³	1.639	1.913	2.133
Absorption coefficient/	9.255	5.023	3.823
mm ⁻¹			
F(000)	448	520	592
Crystal size/mm ³	0.260 x 0.150 x 0.133	0.313 x 0.133 x 0.055	0.186 x 0.127 x 0.054
θ range/°	5.584 to 74.035	3.484 to 29.529	3.320 to 29.684
Index ranges	-9 ≤ h ≤ 9	-11 ≤ h ≤ 7	-13 ≤ h ≤ 12
	-18 ≤ k ≤ 17	-8 ≤ k ≤ 11	-16 ≤ k ≤ 11
	-9 ≤ l ≤ 9	-18 ≤ l ≤ 16	-11 ≤ ≤ 8
Reflections collected	8622	4305	5189
Independent reflections	1792	2191	2301
R(int)	0.0342	0.0276	0.0303
Absorption Correction	Gaussian	Gaussian	Gaussian
Data / restraints /	1792/0/101	2191/0/101	2301/0/101
parameters			
Goodness of fit, S	1.027	1.030	1.050
Final R indices [I> $2\sigma(I)$]	$R_1 = 0.0329$	R1 = 0.0360	R1 = 0.0342
	wR2 = 0.0856	wR2 = 0.0822	wR2 = 0.0653
R indices (all data)	$R_1 = 0.0360$	R1 = 0.0486	R1 = 0.0446
	wR2 = 0.0889	wR2 = 0.0899	wR2 = 0.0715
Max/min residual	+0.533	+0.660	+1.536
electron density/ <i>e</i> ⁻ Å ⁻³	-0.337	-0.636	-1.097

Table S1.3.1. Crystal data and structure refinement for compounds 1a–1c.

Compound	2 a	2b	2c
Empirical formula	C ₆ H ₄ CIPS ₂	$C_6H_4BrPS_2$	C ₆ H ₄ IPS ₂
Formula Weight	206.63	251.09	298.08
Temperature/ K	150(2)	150(2)	150(2)
Wavelength /Å	0.71073	0.71073	0.71073
Crystal System	Monoclinic	Triclinic	Triclinic
Space Group	P2 ₁ /n	P-1	P-1
a/Å	5.9973(4)	8.9636(5)	9.0077(6)
b/Å	17.0236(15)	9.1854(7)	9.3261(7)
c/Å	7.9817(5)	11.3840(10)	11.6087(7)
α/°	90	69.213(7)	69.446(6)
β / °	97.205(7) °	73.956(6)	77.324(5)
γ/°	90	78.555(5)	79.406(6)
Volume/Å ³	808.47(11)	836.88(12)	884.76(11)
Z	4	4	4
Density (calc)/ g cm ⁻³	1.698	1.993	2.238
Absorption coefficient/	1.100	5.518	4.193
mm ⁻¹			
F(000)	416	488	560
Crystal size/mm ³	0.638 x 0.199 x 0.103	0.700 x 0.225 x 0.216	0.341 x 0.207 x 0.194
θ range/°	3.514 to 29.530	3.409 to 29.722	3.468 to 29.889
Index ranges	-6 ≤ h ≤ 8	-12 ≤ h ≤ 11	-12 ≤ h ≤ 12
	-17 ≤ k ≤ 23	-12 ≤ k ≤ 12	-12 ≤ k ≤ 13
	-10 ≤ l ≤ 9	-12 ≤ ≤ 14	-15 ≤ ≤ 11
Reflections collected	4133	6707	7548
Independent reflections	1952	3932	4222
R(int)	0.0253	0.0262	0.0275
Absorption Correction	Gaussian	Gaussian	Gaussian
Data / restraints /	1952/0/91	3932/0/181	4222 / 0 / 181
parameters			
Goodness of fit, S	1.017	0.973	1.013
Final R indices [I> $2\sigma(I)$]	R1 = 0.0342	R1 = 0.0324	R1 = 0.0340
	wR2 = 0.0653	wR2 = 0.0527	wR2 = 0.0652
R indices (all data)	R1 = 0.0517	R1 = 0.0468	R1 = 0.0499
	wR2 = 0.0701	wR2 = 0.0595	wR2 = 0.0742
Max/min residual	+0.385	+0.461	+0.660
electron density/e ⁻ Å ⁻³	-0.304	-0.479	-1.199

Table S1.3.2. Crystal data and structure refinement for compounds 2a–2c.

Compound	3b	4	1e
Empirical formula	$C_7H_6Cl_4GaPS_2$	$C_{12}H_8P_2S_4$	$C_{21}H_{18}NP_{3}S_{6}$
Formula Weight	396.73	342.36	569.63
Temperature/ K	153(2)	173(2)	150(2)
Wavelength /Å	0.71073	0.71073	0.71073
Crystal System	Monoclinic	Monoclinic	Trigonal
Space Group	P2 ₁ /c	P2 ₁ /n	P-3
a/Å	8.0083(16)	7.2588(15)	12.134(2)
b/Å	9.2891(19)	6.1271(12)	12.134(2)
c/Å	18.572(4)	15.846(3)	11.246(2)
α/°	90	90	90
β/°	96.23(3)	104.17(3)	90
γ/°	90	90	120
Volume/Å ³	1373.4(5)	683.3(3)	1434.0(5)
Z	4	2	2
Density (calc)/ g cm ⁻³	1.919	1.664	1.319
Absorption coefficient/	3.166	0.905	0.655
mm ⁻¹			
F(000)	776	348	584
Crystal size/mm ³	0.30 x 0.30 x 0.30	0.18 x 0.16 x 0.08	0.14 x 0.13 x 0.04
θ range/°	2.21to 28.44	3.58 to 28.24	1.81 to 27.53
Index ranges	-10 ≤ h ≤ 10	-9 ≤ h ≤ 9	-15 ≤ h ≤ 15
-	-12 ≤ k ≤ 12	-8 ≤ k ≤ 8	-15 ≤ k ≤ 15
	-4 ≤ l ≤ 24	0 ≤ l ≤ 20	$0 \le I \le 14$
Reflections collected	3320	3308	6447
Independent reflections	3320	3347	2214
R(int)	0.059	0.0428	0.0353
Absorption Correction	Sadabs	Twinabs	Sadabs
Data / restraints /	3320/0/138	3308/0/83	2214/0/96
parameters			
Goodness of fit, S	1.062	1.072	1.093
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0464	R1 = 0.0634	R1 = 0.0984
	wR2 = 0.1087	wR2 = 0.1661	wR2 = 0.2682
R indices (all data)	R1 = 0.0607	R1 = 0.0810	R1 = 0.1047
	wR2 = 0.1186	wR2 = 0.1747	wR2 = 0.2838
Max/min residual	+0.77	+0.71	+1.38
electron density/ <i>e</i> ⁻ Å ⁻³	-0.83	-0.47	-0.48

Table S1.3.3. Crystal data and structure refinement for compounds 3b, 4 and 1e.

S2 Computational studies

S2.1 Computational experimental

Density functional theory (DFT) calculations were performed using the graphical interface WebMO computational platform, which employed the Gaussian 09 package.⁹ Compounds **1a–1c**, **3**⁺, **6** analogue, **7a–7b**, **8a–8b**, **9** analogue and **10**⁺ were initially geometry optimised using the meta-hybrid M06-2X functional¹⁰ and the Pople split valence basis set 6-311+G(2d,p) on all atoms, except iodine.¹¹ In the case of iodine, M06-2X was again used, but the effective core potential (ECP) Def2TZVP was used as the basis set.¹² After this a vibrational frequency calculation was undertaken to ensure each structure was a minimum on the potential energy landscape. Atomic coordinates are presented in section S2.3. Natural bond orbital (NBO) analyses were then performed on the optimised geometries using the same functional and basis set described above and presented in Section S2.2.¹³

S2.2 NBO analysis

 S^1 `P−CI S²

P−I S^2

Natural Population Analysis 1a	Natural Population Analysis 1b	Natural Population Analysis 1c
P: +0.53	P: +0.46	P: +0.36
S ¹ : +0.06	S ¹ : +0.07	S ¹ : +0.30
S ² : +0.06	S ² : +0.07	S ² : +0.30
Cl: -0.33	Br: -0.27	I: -0.17
Wiberg bond order P–Cl: 0.86	Wiberg bond order P–Br: 0.87	Wiberg bond order P–Br: 0.90

S¹⊕ P S²

P-Br

Natural Population Analysis 3 cation	Natural Population Analysis 7a	Natural Population Analysis 7b
P: +0.53	P: +1.40	P: +1.37
S ¹ : +0.30	O ¹ : -0.79	N ¹ : -0.79
S ² : +0.30	O ² : -0.79	N ² : -0.79
	Cl: -0.36	Br: -0.33
	Wiberg bond order P–Cl: 0.87	Wiberg bond order P–Br: 0.87

Natural Population Analysis 8a	Natural Population Analysis 8b	Natural Population Analysis of 6
P: +1.28	P: +1.25	analogue
N ¹ : -0.82	N ¹ : -0.81	P: +0.85
N ² : -0.82	N ² : -0.81	S ¹ : -0.01
Cl: -0.49	Br: -0.49	S ² : +0.03
Wiberg bond order P–CI: 0.66	Wiberg bond order P–Br: 0.63	O: -0.86
5	6	Wiberg bond order P–O: 0.70

Natural Population Analysis of 9 analogue	Natural Population Analysis of 10 cation
P: +1.60	P: +1.24
O ¹ : -0.79	N ¹ : -0.70
O ² : -0.79	N ² : -0.70
O ³ : -0.85	

Wiberg bond order P–O: 0.73

S2.3 Geometry optimised coordinates

Ato	m coordinat	es for 1a	
С	-4.293968	-0.841939	0.481257
С	-2.945390	-0.233248	0.207930
С	-2.741913	1.137587	0.370257
н	-3.569170	1.765314	0.680810
С	-1.499681	1.709660	0.155768
С	-0.432040	0.911247	-0.240191
S	1.154636	1.611721	-0.590997
Ρ	2.321002	-0.142416	-0.476493
S	0.734547	-1.448194	-0.962386
С	-0.621378	-0.456148	-0.408148
С	-1.870943	-1.023410	-0.180779
Н	-2.003173	-2.092293	-0.302366
Cl	2.485242	-0.421179	1.608056
Н	-1.353551	2.772834	0.299612
Н	-4.349612	-1.863878	0.108111
Н	-5.086699	-0.261155	0.007709
Н	-4.496985	-0.863447	1.554130
Ato	m coordinat	es for 1c	
С	-4.684250	-1.601994	0.203063
С	-3.496463	-0.712625	-0.045170
С	-3.348910	-0.055150	-1.267477
С	-2.249225	0.744955	-1.524871
С	-1.273919	0.912017	-0.547144
С	-1.409479	0.263703	0.676633
С	-2.512815	-0.546771	0.921691
Н	-2.599787	-1.056853	1.873950
S			
5	-0.189181	0.531193	1.927847
P	-0.189181 1.384367	0.531193 1.227907	1.927847 0.702029
P S	-0.189181 1.384367 0.111398	0.531193 1.227907 1.981356	1.927847 0.702029 -0.804172
P S I	-0.189181 1.384367 0.111398 2.229290	0.531193 1.227907 1.981356 -0.889418	1.927847 0.702029 -0.804172 -0.323595
P S I H	-0.189181 1.384367 0.111398 2.229290 -2.141209	0.531193 1.227907 1.981356 -0.889418 1.236209	1.927847 0.702029 -0.804172 -0.323595 -2.483714
P S I H H	-0.189181 1.384367 0.111398 2.229290 -2.141209 -4.103384	0.531193 1.227907 1.981356 -0.889418 1.236209 -0.183826	1.927847 0.702029 -0.804172 -0.323595 -2.483714 -2.035110
P S I H H	-0.189181 1.384367 0.111398 2.229290 -2.141209 -4.103384 -4.636209	0.531193 1.227907 1.981356 -0.889418 1.236209 -0.183826 -2.495675	1.927847 0.702029 -0.804172 -0.323595 -2.483714 -2.035110 -0.422710
P S I H H H	-0.189181 1.384367 0.111398 2.229290 -2.141209 -4.103384 -4.636209 -4.728284	0.531193 1.227907 1.981356 -0.889418 1.236209 -0.183826 -2.495675 -1.921599	1.927847 0.702029 -0.804172 -0.323595 -2.483714 -2.035110 -0.422710 1.243561

Ato	m coordinat	es for 1b	
С	-4.546728	-1.205487	-0.457416
С	-3.268012	-0.432171	-0.283072
С	-3.092887	0.797850	-0.920216
С	-1.917072	1.514703	-0.786236
С	-0.889274	1.012367	0.005141
С	-1.049582	-0.212698	0.643716
С	-2.231843	-0.930878	0.495222
Н	-2.339497	-1.890518	0.987362
S	0.247560	-0.809990	1.686686
Р	1.835041	0.375877	0.962154
S	0.596812	1.934020	0.267081
Br	2.388430	-0.698295	-0.985894
Н	-1.791266	2.461735	-1.295717
Н	-3.888718	1.193648	-1.540570
Н	-4.670388	-1.520378	-1.495443
Н	-4.558243	-2.096605	0.169170
Н	-5.410138	-0.592295	-0.193912
• ·			
Ato	m coordinat	tes for 3 ⁺	
С	3.561613	-1.869647	-0.000000
С	2.371174	-0.958010	-0.000000
С	2.562150	0.440395	0.000000
Н	3.574107	0.828332	0.000000
С	1.509787	1.322401	0.000000
С	0.206020	0.809477	0.000000
S	-1.169688	1.860371	0.000000
Ρ	-2.717160	0.548876	0.000000
S	-1.630214	-1.167663	-0.000000
С	0.000000	-0.574166	-0.000000
С	1.083528	-1.458294	-0.000000
Н	0.910907	-2.527529	-0.000000
Н	1.678843	2.391451	0.000000
Н	3.266625	-2.916926	-0.000000
Н	4.179858	-1.682371	0.879855

4.179858 -1.682371 -0.879855

Н

Atom coordinates for 7a				
Ρ	-0.811383	1.701515	0.000000	
Cl	1.208153	2.298798	0.000000	
0	-0.754814	0.573727	1.201234	
С	-0.316443	-0.630330	0.692571	
С	-0.316443	-0.630330	-0.692571	
0	-0.754814	0.573727	-1.201234	
C	0.056055	-1.737619	-1.417752	
C	0.437667	-2.867698	-0.694729	
C	0.437667	-2.867698	0.694729	
C	0.056055	-1.737619	1.417752	
н	0.050196	-1.718927	2,498776	
н	0 740717	-3 758151	1 229396	
н	0.740717	-3 758151	-1 229396	
	0.050106	-1 712027	-2 /08776	
п	0.030190	-1./1092/	-2.498770	
Ato	m coordinat	es for 8a		
ло С	0 380133	-0 485716	2 636707	
N	0.098960	-0 529/01	1 1959//	
D	1 200160	-0 5663/9	0.000000	
CI	2 015805	1 557223	0.000000	
N	2.013803	0 5 2 0 4 0 1	1 105044	
	1 170754	-0.323401	-1.193944	
C C	-1.170754	-0.227520	-0.700515	
C C	-1.1/0/54	-0.227320	0.700513	
C	-2.342/19	-0.013192	1.40/0/5	
C	-3.519415	0.203436	0.693784	
C	-3.519415	0.203436	-0.693784	
C	-2.342/19	-0.013192	-1.40/0/5	
н	-2.349147	-0.014012	-2.488761	
Н	-4.441987	0.376823	-1.232018	
Н	-4.441987	0.376823	1.232018	
Н	-2.349147	-0.014012	2.488761	
С	0.380133	-0.485716	-2.636707	
С	1.702620	-1.171419	-2.951026	
Н	1.841534	-1.203389	-4.031782	
Н	1.725815	-2.191512	-2.565950	
Н	2.541981	-0.615208	-2.525410	
С	0.366322	0.946337	-3.169989	
Н	0.440886	0.934190	-4.258941	
Н	-0.547631	1.470089	-2.890323	
Н	1.210865	1.504935	-2.765233	
Н	-0.422702	-1.057606	-3.112948	
С	1.702620	-1.171419	2.951026	
Н	1.841534	-1.203389	4.031782	
Н	1.725815	-2.191512	2.565950	
Н	2.541981	-0.615208	2.525410	
С	0.366322	0.946337	3.169989	
Н	0.440886	0.934190	4.258941	
Н	-0.547631	1.470089	2.890323	
Н	1.210865	1.504935	2.765233	
Н	-0.422702	-1.057606	3.112948	

Atom coordinates for 7h			
			0 00000
r Dr	1 716901	1.377303	-0.000000
	1.710601	1.457297	-0.000000
0	-0.899562	0.490704	1.200009
C	-0.899562	-0.784683	0.092574
C	-0.899562	-0.784683	-0.692574
0	-0.899562	0.496704	-1.200069
C	-0.925504	-1.952491	-1.418295
C	-0.951511	-3.144230	-0.694953
C	-0.951511	-3.144230	0.694953
C	-0.925504	-1.952491	1.418295
Н	-0.923441	-1.932803	2.499263
Н	-0.968279	-4.084890	1.229085
Н	-0.968279	-4.084890	-1.229085
Н	-0.923441	-1.932803	-2.499263
Ato	m coordinat	es for 8b	
C	-0.723748	0.011292	2,637892
N	-0 701559	0 290622	1 194681
P	-0 965473	-0.868501	0.000000
' Br	1 158597	-2 116477	0.000000
N	-0 701559	0 290622	-1 19/681
C	-0 185773	1 / 8810/	-0 700284
c	-0.185773	1.488134	0.700284
c	-0.183773	2 605429	1 407906
C	0.250090	2.005428	1.407800
C	0.051735	3.723711	0.094357
C	0.051735	3.723711	-0.094357
	0.230690	2.005428	-1.407800
н	0.229690	2.613389	-2.489417
н	0.983991	4.601595	-1.232823
н	0.983991	4.601595	1.232823
Н	0.229690	2.613389	2.489417
C	-0./23/48	0.011292	-2.63/892
C	-1.61/535	-1.182975	-2.942047
Н	-1.687948	-1.310562	-4.022410
Н	-2.622594	-1.044016	-2.541791
Н	-1.194373	-2.101604	-2.527013
С	0.683888	-0.204146	-3.191025
Н	0.642138	-0.272526	-4.279570
Н	1.352176	0.612687	-2.919769
Н	1.104321	-1.128560	-2.794596
Н	-1.166429	0.898322	-3.102256
С	-1.617535	-1.182975	2.942047
Н	-1.687948	-1.310562	4.022410
Н	-2.622594	-1.044016	2.541791
Н	-1.194373	-2.101604	2.527013
С	0.683888	-0.204146	3.191025
Н	0.642138	-0.272526	4.279570
Н	1.352176	0.612687	2.919769
Н	1.104321	-1.128560	2.794596
Н	-1.166429	0.898322	3.102256

	Atom coordinates for analogue of 6					
С	-4.291058	-1.113363	0.350949			
С	-2.977276	-0.390239	0.222617			
С	-1.855028	-1.047005	-0.270400			
С	-0.647439	-0.376555	-0.424628			
S	0.759590	-1.189466	-1.127597			
Ρ	2.276484	0.157111	-0.457591			
S	0.984672	1.823092	-0.324678			
С	-0.545328	0.966573	-0.069814			
С	-1.656864	1.627466	0.437623			
С	-2.859637	0.952397	0.576269			
Н	-3.719353	1.475895	0.977954			
Н	-1.577709	2.666906	0.730504			
0	2.385352	-0.183728	1.148109			
С	3.154669	-1.335497	1.485473			
Н	3.325075	-1.294774	2.558590			
Н	4.116186	-1.335646	0.963697			
Н	2.604179	-2.245552	1.237346			
Н	-1.918813	-2.096040	-0.536970			
Н	-4.864510	-1.036931	-0.575936			
н	-4.139137	-2.172416	0.559851			

om coordinat	es for 10 +	
0.717507	-0.105398	2.647457
0.426488	-0.153355	1.189597
1.580751	-0.155310	0.000000
0.426488	-0.153355	-1.189597
-0.867683	-0.158441	-0.700215
-0.867683	-0.158441	0.700215
-2.066388	-0.188927	1.420284
-3.240631	-0.215091	0.703176
-3.240631	-0.215091	-0.703176
-2.066388	-0.188927	-1.420284
-2.074745	-0.194512	-2.501452
-4.184339	-0.239490	-1.231678
-4.184339	-0.239490	1.231678
-2.074745	-0.194512	2.501452
0.717507	-0.105398	-2.647457
2.145635	-0.543000	-2.928404
2.298419	-0.568331	-4.006613
2.350366	-1.539926	-2.535046
2.869757	0.164714	-2.516534
0.435568	1.295065	-3.179000
0.547132	1.300661	-4.263191
-0.572250	1.629806	-2.935271
1.148376	2.006578	-2.757713
0.032182	-0.826440	-3.098533
2.145635	-0.543000	2.928404
2.298419	-0.568331	4.006613
2.350366	-1.539926	2.535046
2.869757	0.164714	2.516534
0.435568	1.295065	3.179000
0.547132	1.300661	4.263191
-0.572250	1.629806	2.935271
1.148376	2.006578	2.757713
0.032182	-0.826440	3.098533
	om coordinat 0.717507 0.426488 1.580751 0.426488 -0.867683 -0.867683 -2.066388 -3.240631 -3.240631 -3.240631 -2.066388 -2.074745 -4.184339 -2.074745 0.717507 2.145635 2.298419 2.350366 2.869757 0.435568 0.547132 -0.572250 1.148376 0.032182 2.869757 0.435568 0.547132 -0.572250 1.148376 0.435568 0.547132 -0.572250 1.148376	bm coordinates for 10* 0.717507 -0.105398 0.426488 -0.153355 1.580751 -0.155310 0.426488 -0.153355 -0.867683 -0.158441 -0.867683 -0.158441 -2.066388 -0.188927 -3.240631 -0.215091 -2.066388 -0.188927 -2.074745 -0.194512 -4.184339 -0.239490 -4.184339 -0.239490 -4.184339 -0.239490 -2.074745 -0.194512 0.717507 -0.105398 2.145635 -0.543000 2.298419 -0.568331 2.350366 -1.539926 2.869757 0.164714 0.435568 1.295065 0.547132 1.300661 -0.572250 1.629806 1.148376 2.06578 0.032182 -0.568331 2.350366 -1.539926 2.869757 0.164714 0.435568 1.295065 0.547132

Atom coordinates for analogue of 9

			•
С	-3.203102	0.631576	1.083689
0	-2.040835	-0.152777	0.822892
Ρ	-1.600433	-0.341431	-0.730676
0	-0.381027	-1.421169	-0.441872
С	0.775633	-0.745944	-0.125222
С	0.677580	0.610658	-0.398827
0	-0.549174	0.940298	-0.924067
С	1.731606	1.467061	-0.179362
С	2.908931	0.916717	0.329384
С	3.006287	-0.441148	0.601645
С	1.930098	-1.300663	0.375363
Н	1.987113	-2.360492	0.582688
Н	3.929622	-0.842973	0.997885
Н	3.757271	1.562408	0.514571
Н	1.639044	2.521759	-0.400224
Н	-3.972301	0.464493	0.324752
Н	-2.943898	1.690723	1.110219
н	-3.584269	0.325194	2.054604

S3 References

- 1. CrysAlisPro, Agilent Technoligies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).
- 2. SHELXL-2013, G. M. Sheldrick, University of Göttingen, Germany (2013).
- 3. SAINT, Bruker AXS, Madison, WI, USA.
- 4. Sadabs, Bruker AXS, Madison, WI, USA.
- 5. Twinabs, Bruker AXS, Madison, WI, USA.
- 6. G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3-8.
- 7. A. L. Spek, Acta Cryst. D, 2009, **65**, 148 155.
- DIRDIF: A Computer Program System for Crystal Structure Determination by Patterson Methods and Direct Methods Applied to Difference Structure Factors. P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, Crystallography Laboratory, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 10. Y. ZhaoDonald and G. Truhlar, Theor. Chem. Account, 2008, 120, 215–241.
- 11. R. Ditchfield, W. J. Hehre and J.A. Pole, J. Chem. Phys., 1971, 54, 724.
- 12. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- 13. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold.

S4 NMR spectra

10.0 9.5 7.5 7.0 3.5 2.5 2.0 1.5 1.0 0.0 9.0 8.5 8.0 6.5 6.0 5.5 5.0 4.5 4.0 3.0 0.5

S4.1.2 ¹³C{¹H} NMR (126 MHz, 295 K, CDCl₃) spectrum of 2-chloro-5-methylbenzo-1,3,2-dithiaphosphole (1a)

chloro-5-methylbenzo-1,3,2-dithiaphosphole (1a)

MHz, 295 K, CDCl₃) spectrum of 2-bromo-5-methylbenzo-1,3,2-dithiaphosphole (**1b**)

P-Br

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

295 K, CDCl₃) spectrum of 2-bromo-5-methylbenzo-1,3,2-dithiaphosphole (1b)

 $CDCl_3$) spectrum of 2-iodo-5-methylbenzo-1,3,2-dithiaphosphole (1c)

DCM

S4.1.8 ¹³C{¹H} NMR (126 MHz, 295 K, CDCl₃) spectrum of 2-iodo-5-methylbenzo-1,3,2-dithiaphosphole (1c)

bromo-5-methylbenzo-1,3,2-dithiaphosphole (1c)

S4.1.10 ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of 5-methyl-N,N-bis(trimethylsilyl)benzo-1,3,2-dithiaphosphol-2-amine (1d)

S4.1.11 ¹³C{¹H} NMR (126 MHz, 295 K, CDCl₃) spectrum of 5-methyl-N,N-bis(trimethylsilyl)benzo-1,3,2-dithiaphosphol-2-amine (**1d**)

S4.1.12 ³¹P{¹H} NMR (202 MHz, 295 K, CDCl₃) spectrum of 5-methyl-N,N-bis(trimethylsilyl)benzo-1,3,2-dithiaphosphol-2-amine (1d)

P-N(SiMe₃)₂ -93.9 200 150 100 -50 -100 -150 -200 50 0 -250 -300

S4.1.13 ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of tris(5-methylbenzo-1,3,2-dithiaphosphol-2-yl)amine (**1e**)

S4.1.14 ¹³C{¹H} NMR (126 MHz, 295 K, CDCl₃) spectrum of tris(5-methylbenzo-1,3,2-dithiaphosphol-2-yl)amine (**1e**)

S4.1.15 ³¹P{¹H} NMR (202 MHz, 295 K, CDCl₃) spectrum of tris(5-methylbenzo-1,3,2-dithiaphosphol-2-yl)amine (**1e**)

S4.1.16 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 2-chlorobenzo-1,3,2-dithiaphosphole (**2a**)

S4.1.17 ¹³C{¹H} NMR (101 MHz, 295 K, CDCl₃) spectrum of 2-chlorobenzo-1,3,2-dithiaphosphole (**2a**)

															· · · ·	10 A A A A A A A A A A A A A A A A A A A				
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

S4.1.18 ³¹P{¹H} NMR (162 MHz, 295 K, CDCl₃) spectrum of 2-chlorobenzo-1,3,2-dithiaphosphole (**2a**)

P−CI

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

S4.1.19 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 2-bromobenzo-1,3,2-dithiaphosphole (**2b**)

S4.1.20 ¹³C{¹H} NMR (101 MHz, 295 K, CDCl₃) spectrum of 2-bromobenzo-1,3,2-dithiaphosphole (**2b**)

S4.1.21 ³¹P{¹H} NMR (162 MHz, 295 K, CDCl₃) spectrum of 2-bromobenzo-1,3,2-dithiaphosphole (**2b**)

220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

S4.1.22 ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of 2-iodobenzo-1,3,2-dithiaphosphole (**2c**)

S4.1.23 ¹³C{¹H} NMR (126 MHz, 295 K, CDCl₃) spectrum of 2-iodobenzo-1,3,2-dithiaphosphole (2c)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

S4.1.24 ³¹P{¹H} NMR (202 MHz, 295 K, CDCl₃) spectrum of 2-iodobenzo-1,3,2-dithiaphosphole (**2c**)

S4.1.26 ³¹P{¹H} NMR (202 MHz, 295 K, CDCl₃) spectrum of 1,3,2-benzodithiaphosphoryl dimer (4)

S4.1.28 ³¹P{¹H} NMR (121 MHz, 295 K, CDCl₃) spectrum of 5-methyl-1,3,2-benzodithiaphosphoryl dimer (5)

S4.1.29 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 2-(benzyloxy)-5-methylbenzo-1,3,2-dithiaphosphole (**6a**)

S4.1.30¹³C{¹H} NMR (101 MHz, 295 K, CDCl₃) spectrum of 2-(benzyloxy)-5-methylbenzo-1,3,2-dithiaphosphole (**6a**)

S4.1.31 ³¹P NMR (162 MHz, 295 K, CDCl₃) spectrum of 2-(benzyloxy)-5-methylbenzo-1,3,2-dithiaphosphole (**6a**)

-124.5 -124.5 -124.4 P-O

		· · · · · · · · · · · · · · · · · · ·					1	· · · · · · · · · · · · · · · · · · ·		S				S		10 C						· · · · · · · · · · · · · · · · · · ·		
240	220	200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240

S4.1.32 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 5-methyl-2-(neopentyloxy)benzo-1,3,2-dithiaphosphole (**6b**)

methyl-2-(neopentyloxy)benzo-1,3,2-dithiaphosphole (6b)

S P-O

S4.1.34 ³¹P NMR (162 MHz, 295 K, CDCl₃) spectrum of 5-methyl-2-(neopentyloxy)benzo-1,3,2-dithiaphosphole (**6b**)

			· · · ·		-		-						· · ·						· · ·					
240	220	200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240

S4.1.35 ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of 2-chlorobenzo-1,3,2-dioxaphosphole (7a)

S4.1.36 ¹³C{¹H} NMR (126 MHz, 295 K, CDCl₃) spectrum of 2-chlorobenzo-1,3,2-dioxaphosphole (7a)

S4.1.37 ³¹P{¹H} NMR (202 MHz, 295 K, CDCl₃) spectrum of 2-chlorobenzo-1,3,2-dioxaphosphole (7a)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

2-bromobenzo-1,3,2-dioxaphosphole (7b)

DCM

S4.1.39 ¹³C{¹H} NMR (126 MHz, 295 K, CDCl₃) spectrum of 2-bromobenzo-1,3,2-dioxaphosphole (7b)

S4.1.41 ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of N,N'-diisopropylbenzene-1,2-diamine

S4.1.42 ¹³C{¹H} NMR (126 MHz, 295 K, CDCl₃) spectrum of N,N'-diisopropylbenzene-1,2-diamine

S4.1.43 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 2-chloro-1,3-diisopropyl-benzodiazaphosphole (8a)

DCM

S4.1.44 ¹³C{¹H} NMR (101 MHz, 295 K, CDCl₃) spectrum of 2-chloro-1,3-diisopropyl-benzodiazaphosphole (8a)

0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

S4.1.45 ³¹P{¹H} NMR (162 MHz, 295 K, CDCl₃) spectrum of 2-chlorobenzo-1,3,2-dioxaphosphole (8a)

S4.1. 46 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 2-bromo-1,3-diisopropyl-benzodiazaphosphole (**8b**)

S4.1.47 ¹³C{¹H} NMR (101 MHz, 295 K, CDCl₃) spectrum of 2-bromo-1,3-diisopropyl-benzodiazaphosphole (**8b**)

S4.1.48 ³¹P{¹H} NMR (162 MHz, 295 K, CDCl₃) spectrum of 2-chlorobenzo-1,3,2-dioxaphosphole (**8b**)

S4.1.49 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 2-(benzyloxy)benzo-1,3,2-dioxaphosphole (**9a**)

S4.1.50¹³C{¹H} NMR (101 MHz, 295 K, CDCl₃) spectrum of 2-(benzyloxy)benzo-1,3,2-dioxaphosphole (**9a**)

S4.1.51 ³¹P{¹H} NMR (162 MHz, 295 K, CDCl₃) spectrum of 2-(benzyloxy)benzo-1,3,2-dioxaphosphole (9a)

82

S4.1.52 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 2-(neopentyloxy)benzo-1,3,2-dioxaphosphole (9b)

S4.1.53 ¹³C{¹H} NMR (101 MHz, 295 K, CDCl₃) spectrum of 2-(neopentyloxy)benzo-1,3,2-dioxaphosphole (9b)

84

S4.1.54 ³¹P NMR (162 MHz, 295 K, CDCl₃) spectrum of 2-(neopentyloxy)benzo-1,3,2-dioxaphosphole (**9b**)

-0____ -127.4

7.61 $\begin{array}{c}
 1.88 \\
 1.88 \\
 1.87 \\
 1.87 \\
 1.86 \\
\end{array}$ 2 69 62 F ⊝ OTf Ð Ъ]] .00 ¥ 96. 11.95H ٣ 56 86 2.0 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 1.5 1.0 0.5 0.0

S4.1.55 ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 1,3-diisopropyl-benzodiphosphenium triflate (10)

S4.1.56 ¹³C{¹H} NMR (101 MHz, 295 K, CDCl₃) spectrum of 1,3-diisopropyl-benzodiphosphenium triflate (10)

240 220 200 180 160 140 120 100

80

60

40

20

0

-20

-40

-60

-80

-100 -120 -140 -160 -180 -200 -220 -240

MHz, 295 K, CDCl₃) benzodiphosphenium

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

1,3-diisopropyl-benzodiphosphenium triflate (10)

S4.1.59 Stack-plot of³¹P{¹H} NMR (202.5 MHz, 295 K, d₈-toluene) spectra of the reduction of **1a** and **2a** to form **5** and **4** respectively

S4.2 NMR spectra of hydroborated aldehydes

S4.2.1. ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-((4-(trifluoromethyl)benzyl)oxy)-1,3,2-dioxaborolane (**11a**)

S4.2.2. ¹¹B NMR (160 MHz, 295 K, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-((4-(trifluoromethyl)benzyl)oxy)-1,3,2-dioxaborolane

S4.2.3. ¹⁹F{¹H} NMR (471 MHz, 295 K, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-((4-(trifluoromethyl)benzyl)oxy)-1,3,2-dioxaborolane

-68 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -46

S4.2.4. ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of 2-((4-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**11b**)

¹¹B NMR (128 MHz,

295 K,

-22.3

												1					
180	160	140	120	100	80	60	40	20	0 -1	0	-30	-50	-70	-90	-120	-150	-180

CDCl₃) spectrum of 2-((4-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**11b**)

S4.2.6. ¹⁹F{¹H} NMR (376 MHz, 295 K, CDCl₃) spectrum of 2-((4-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**11b**)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

S4.2.8. ¹¹B NMR (128 MHz, 295 K, CDCl₃) spectrum of 2-((3-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11c)

100

S4.2.9. $F \xrightarrow{O} H \xrightarrow{H} H$	78.3	 ¹⁹ F{ ¹ H} NMR (376 MHz, 295 K, CDCl ₃) spectrum

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

101

of 2-((3-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11c)

S4.2.10. ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of 2-((2-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**11d**)

S4.2.11. ¹¹B NMR (128 MHz, 295 K, CDCl₃) spectrum of 2-((2-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11d)

S4.2.12. ¹⁹F{¹H} NMR (376 MHz, 295 K, CDCl₃) spectrum of 2-((2-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**11d**)

S4.2.13. ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 2-((4-bromobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**11e**)

S4.2.14. ¹¹B NMR (128 MHz, 295 K, CDCl₃) spectrum of 2-((4-bromobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11e)

4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzonitrile (11f)

S4.2.16. ¹¹B NMR (128 MHz, 295 K, CDCl₃) spectrum of 4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzonitrile (11f)

108

S4.2.17. ¹H NMR (500 MHz, 295 K, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-((4-nitrobenzyl)oxy)-1,3,2-dioxaborolane (**11g**)

S4.2.18.	
(160 MHz,	
CDCl₃)	

-21.06

¹¹B NMR 295 K, spectrum

of 4,4,5,5-tetramethyl-2-((4-nitrobenzyl)oxy)-1,3,2-dioxaborolane (11g)

CDCl₃) spectrum of 2-(benzyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11h)

S4.2.20. ¹¹B NMR (128 MHz, 295 K, CDCl₃) spectrum of 2-(benzyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**11h**)

S4.2.21. ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 1,4-bis(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzene (**11i**)

S4.2.22. ¹¹B NMR (128 MHz, 295 K, CDCl₃) spectrum of 1,4-bis(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzene (**11i**)

S4.2.23. ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of N,N-dimethyl-4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)oxy)methyl)aniline (11j)

S4.2.24. ¹¹B NMR (128 MHz, 295 K, CDCl₃) spectrum of N,N-dimethyl-4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)aniline (**11**j)

of 4,4,5,5-tetramethyl-2-(naphthalen-2-ylmethoxy)-1,3,2-dioxaborolane (11k)

S4.2.26. ¹¹B NMR (128 MHz, 295 K, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-(naphthalen-2-ylmethoxy)-1,3,2-dioxaborolane (**11k**)

-----.... 180 160 140 120 100 80 60 40 20 0 -10 -30 -50 -70 -90 -120 -150 -180

S4.2.27. ¹H NMR (400 MHz, 295 K, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-(neopentyloxy)-1,3,2-dioxaborolane (**11**)

