Supporting Information

Iron-doped Cobalt Phosphide Nano-Electrocatalyst Derived from

Metal-Organic Framework for Efficient Water Splitting

Can Lin^a, Pengyan Wang^a, Huihui Jin^a, Jiahuan Zhao^a, Ding Chen^a, Suli Liu^{b,*},

Chengtian Zhang^a, Shichun Mu^{a,*}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan

University of Technology, Wuhan 430070, China

^bKey Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University,

Nanjing 211171, China

*Corresponding author: E-mail: <u>msc@whut.edu.cn</u>, <u>niuniu_410@126.com</u>

Materials: Cobalt chloride hexahydrate (CoCl₂·6H₂O, Aladdin), Iron (III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O, Aladdin), 2-methylimidazole (C₄H₆N₂, Aladdin), sodium hypophosphite (NaH₂PO₂·H₂O, Aladdin), ethanol (Aladdin), Nafion (Sigma-Aldrich), IrO₂ (Sigma-Aldrich). All reagents are purchased from commercial companies without further treatment. Deionized water acts as solvent in the experiment. Electrochemical Measurements: OER and HER tests were carried out at room temperature with an electrochemical workstation (CHI660E, Shanghai, China) with a standard three-electrode system. Comprising a graphite rod as the counter electrode, a saturated Hg/HgO as the reference electrode, and Ni foam coated with catalyst as working electrode. To prepare the working electrode, the as-prepared electrocatalyst (5 mg) and Nafion (20 µL, 5 wt%) were scattered in 980 µL isopropanol-water solution (volume ratio of isopropanol to water is 9:1) and then mixture was ultrasonicated for 1 h to form homogeneous ink. The well-mixed ink was used to coat and cover Ni foam surface to achieve a mass loading of 3 mg cm⁻². For comparison, IrO₂ ink was prepared by the same method. Ni foam substrate was thoroughly cleaned with $0.5 \text{ M H}_2\text{SO}_4(15)$ min), absolute ethanol (20 min) and finally rinsed with deionized water (20 min) in an ultrasound bath. Polarization curves were obtained at room temperature with a scan rate of 5 mV s⁻¹ in 1.0 M KOH. All potentials were transformed to the reversible hydrogen electrode (RHE) by following the equation: E(RHE) = E(Hg/HgO) + 0.059 pH + 0.098V. The overpotential (η) of OER was calculated by the formula (η (V) = E (RHE) - 1.23 V) and the overpotential (n) of HER was calculated by the following formula (n (V) = - E (RHE)). The obtained polarization curves were iR-compensated. Tafel plots were fitted according to the formula ($\eta = b\log j + a$), where η is the overpotential, j represents the current density, a and b represent constant and Tafel slope, respectively. Electrochemical impedance spectroscopy (EIS) was performed at open circuit potential with the frequency range of 10⁻¹ Hz to 10⁵ Hz. The double layer capacitance (C_{dl}) was determined by cyclic voltammetry curves measured by scan rates of 80, 100, 120, 140 and 160 mV s⁻¹.

Figure S1. SEM image of Fe_{0.27}Co_{0.73} precursor

Figure S2. SEM images of $Fe_{0.27}Co_{0.73}$ precursor that was calcined in nitrogen

without adding phosphorus source.

Figure S3. XRD patterns of ZIF-67 and $Fe_{0.27}Co_{0.73}$ precursor

Figure S4. XRD patterns of Fe_{0.22}Co_{0.78}P, Fe_{0.44}Co_{0.56}P, CoP.

Figure S5. XRD patterns for a slow scan of 1 degree per minute for a specific diffraction angle including CoP, Fe_{0.22}Co_{0.78}P and Fe_{0.44}Co_{0.56}P.

Figure S6. Low-resolution TEM image of $Fe_{0.27}Co_{0.73}P$

Figure S7. (a) N_2 adsorption-desorption isotherms and (b) pore size distributions of $Fe_{0.27}Co_{0.73}P$.

Figure S8. XPS spectrum of $Fe_{0.27}Co_{0.73}P$ and $Fe_{0.22}Co_{0.78}P$ in Fe 2p region.

Figure S9. Multi-step current curve for $Fe_{0.27}Co_{0.73}P/NF$ without iR correction.

Figure S10. Polarization curves of $Fe_{0.27}Co_{0.73}P/NF$, $Fe_{0.22}Co_{0.78}P/NF$ and

Fe_{0.44}Co_{0.56}P/NF.

Figure S11. Tafel slopes of $Fe_{0.27}Co_{0.73}P/NF$, $Fe_{0.22}Co_{0.78}P/NF$ and $Fe_{0.44}Co_{0.56}P/NF$.

Figure S12. Polarization curves of $Fe_{0.27}Co_{0.73}P/NF$, $Fe_{0.22}Co_{0.78}P/NF$ and

Fe_{0.44}Co_{0.56}P/NF.

Figure S13. Tafel slopes of $Fe_{0.27}Co_{0.73}P/NF$, $Fe_{0.22}Co_{0.78}P/NF$ and $Fe_{0.44}Co_{0.56}P/NF$.

Figure S14. Polarization curves for $Fe_{0.27}Co_{0.73}P/NF$ initial and after 3000 CV cycles.

Figure S15. XPS spectrum of $Fe_{0.27}Co_{0.73}P$ before and after OER test in Co 2p region

and Fe 2p region.

Figure S16. CVs of (a) CoP/NF and (c) $Fe_{0.27}Co_{0.73}P/NF$ and corresponding current

densities of (b) CoP/NF and (d) $Fe_{0.27}Co_{0.73}P/NF$ plotted as a function of scan rate.

Figure S17. CVs of (a) $Fe_{0.22}Co_{0.78}P/NF$ and (c) $Fe_{0.44}Co_{0.56}P/NF$ and corresponding current densities of (b) $Fe_{0.22}Co_{0.78}P/NF$ and (d) $Fe_{0.44}Co_{0.56}P/NF$ plotted as a function

of scan rate.

Figure S18. EIS spectra of $Fe_{0.27}Co_{0.73}P/NF$, $Fe_{0.22}Co_{0.78}P/NF$, CoP/NF and

Fe_{0.44}Co_{0.56}P/NF.

Electrocatalysts	Current density	Overpotential	Reference
	(mA cm ⁻²)	(mV)	
Fe _{0.27} Co _{0.73} P/NF	10	251	This work
CeOx/CoS	10	259	Angew. Chem. Int. Ed. 2019, 58, 139.
NiCo LDH	20	393	Nano Lett. 2015, 15, 1421.
ZIF-67/LDH	10	340	J. Am. Chem. Soc. 2015, 137, 5590.
ZIF-8/ZIF-67 core/shell structure	10	450	Adv. Mater. 2017, 29, 1700874.
Ni _{1.85} Fe _{0.15} P NSAs/NF	20	270	ACS Appl. Mater. Interfaces 2017, 9, 26001.
Ni ₃ N/NF	20	399	J. Mater. Chem. 2015, 3, 8171.

Table S1. Comparison of OER performance in 1.0 M KOH for $Fe_{0.27}Co_{0.73}P$ /NF with other recently reported representative OER electrocatalysts in alkaline solution.

Video S1. Video of $Fe_{0.27}Co_{0.73}P/NF$ electrodes electrolyze water in electrolyzed water

reaction tank containing 1.0 M KOH alkaline solution.

Video S2. Video demonstration uses a drainage method to collect hydrogen and oxygen for characterizing the $Fe_{0.27}Co_{0.73}P$ Faradaic efficiency.