## **Electronic Supplementary Information (ESI)**

## NLO-active Y-shaped ferrocene conjugated imidazole chromophores as precursors for SHG polymeric films

Selvam Prabu,<sup>a</sup> Ezhumalai David,<sup>a</sup> Thamodharan Viswanathan,<sup>a</sup> Krishnan Thirumoorthy,<sup>a</sup> Tamas Panda,<sup>a</sup> Claudia Dragonetti,<sup>\*b,c</sup> Alessia Colombo,<sup>b,c</sup> Daniele Marinotto,<sup>b,c</sup> Stefania Righetto,<sup>b</sup> Dominique Roberto<sup>b,c</sup> and Nallasamy Palanisami<sup>a</sup>\*

- a. Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
- b. Department of Chemistry and Centro CIMAINA, University of Milan, INSTM-Research Unit, Via C. Golgi 19, 20133 Milan, Italy.
- c. ISTM-CNR via Golgi 19 Milan, Italy.



Figure S1. Absorption spectra of a PMMA film containing compound 3 before and after poling



Figure S2. <sup>1</sup>H NMR spectrum of compound 1(H) in DMSO-d<sub>6</sub> at 25 °C



Figure S3. <sup>13</sup>C NMR spectrum of compound 1(H) in DMSO-d<sub>6</sub> at 25 °C



Figure S4. <sup>1</sup>H NMR spectrum of compound 2(OCH<sub>3</sub>) in DMSO-d<sub>6</sub> at 25 °C



Figure S5. <sup>13</sup>C NMR spectrum of compound 2(OCH<sub>3</sub>) in DMSO-d<sub>6</sub> at 25 °C



Figure S6. <sup>1</sup>H NMR spectrum of compound 3(CF<sub>3</sub>) in DMSO-d<sub>6</sub> at 25 °C



Figure S7. <sup>13</sup>C NMR spectrum of compound 3(CF<sub>3</sub>) in DMSO-d<sub>6</sub> at 25 °C



Figure S8. <sup>19</sup>F NMR spectrum of compound 3(CF<sub>3</sub>) in DMSO-d<sub>6</sub> at 25 °C



Figure S9. <sup>1</sup>H NMR spectrum of compound 4(CN) in DMSO-d<sub>6</sub> at 25 °C



Figure S10. <sup>13</sup>C NMR spectrum of compound 4(CN) in DMSO-d<sub>6</sub> at 25 °C



Figure S11. <sup>1</sup>H NMR spectrum of compound 5(NO<sub>2</sub>) in DMSO-d<sub>6</sub> at 25 °C



Figure S12. <sup>13</sup>C NMR spectrum of compound 5(NO<sub>2</sub>) in DMSO-d<sub>6</sub> at 25 °C



Figure S13. TGA curve of compounds 1(H) and 4(CN)



Figure S14. The optimized geometries of chromophores 1-5 obtained at B3LYP/6-31+G\*\* level of theory

SMP-15



Figure S15. HRMS (EI) spectrum of compound 1(H)

SMP6 Scar. 10 TIC=6548141 Base=99.8%FS #ions=269 RT=.23





SMP8

Scan: 2 TIC=2073705 Base=42.5%FS #ions=425 RT=.03



Figure S17. HRMS (EI) spectrum of compound 3(CF<sub>3</sub>)

Scan: 4 TIC=1631397 Base=35.5%FS #ions=469 RT=.08

SMP9



12

Scan: 10 TIC=6216397 Base=65.4%FS #ions=285 RT=.23

SMP7



Figure S19. HRMS (EI) spectrum of compound 5(NO<sub>2</sub>)



Figure S20. Theoretically calculated absorption spectra of chromophores 1-5. The absorption spectra were obtained by TD-DFT calculation with B3LYP/6-31+G\*\* level of theory. The spectra were visualized in GaussView 5.0

| Identification code                        | Compound 4. Methanol          |
|--------------------------------------------|-------------------------------|
| CCDC                                       | 1885673                       |
| Empirical formula                          | $C_{35} H_{32} Fe_2 N_3 O_1$  |
| Formula weight                             | 621.33                        |
| Temperature, K                             | 298                           |
| Wavelength, Å                              | 0.71073                       |
| Crystal System                             | Orthorhombic                  |
| Space group                                | Pbca                          |
| Unit cell dimensions                       | a =21.827(2)Å                 |
|                                            | b = 11.6814(10)Å              |
|                                            | c = 22.747(2)Å                |
|                                            | $\alpha = 90^{\circ}$         |
|                                            | $\beta = 90^{\circ}$          |
|                                            | $\gamma = 90^{\circ}$         |
| Volume                                     | 5799.8(9) A <sup>3</sup>      |
| Z                                          | 8                             |
| Calculated density (Mg/m <sup>3</sup> )    | 1.425                         |
| Absorption coefficient (mm <sup>-1</sup> ) | 1.034                         |
| F (000)                                    | 2576.0                        |
| Crystal size (mm <sup>3</sup> )            | 0.32 x 0.25 x 0.16            |
| Theta range for data collection<br>(°)     | 1.79 to 28.51                 |
| Reflections collected                      | 45309                         |
| Completeness to theta = $25.242$           | 99.0 %                        |
| Max. and min. transmission                 | 0.741 and 0.848               |
| Goodness-of-fit on F <sup>2</sup>          | 0.863                         |
| Refinement method                          | Full-matrix least-            |
|                                            | squares on F <sup>2</sup>     |
| Final R indices $[I > 2\sigma(I)]$         | $R_1 = 0.0550, wR_2 = 0.1634$ |
| R indices (all data)                       | $R_1 = 0.1330, wR_2 = 0.1884$ |

 Table S1. Crystallographic data and structure refinement parameters of compound 4

| Chromophores               | $\mathbf{E}_{\mathbf{pa}}$ | E <sub>pc</sub> i              | <sub>pc</sub> /i <sub>pa</sub> | E <sub>1/2</sub>  | $\Delta \mathbf{E}$ | E <sub>HOM</sub> | o E <sub>lumo</sub> | $\lambda^{onset}$          | $\mathbf{E}_{\mathbf{g}}$ optical |
|----------------------------|----------------------------|--------------------------------|--------------------------------|-------------------|---------------------|------------------|---------------------|----------------------------|-----------------------------------|
|                            | (mV) <sup>a</sup>          | <sup>1</sup> (mV) <sup>a</sup> |                                | (mV) <sup>a</sup> | (mV) <sup>a</sup>   | (eV)*            | a (eV) <sup>a</sup> | ( <b>nm</b> ) <sup>b</sup> | (eV) <sup>c</sup>                 |
| Compound 1                 | 578                        | 439                            | 1.3                            | 797               | 139                 | -5.07            | -1.81               | 380                        | 3.26                              |
| Compound 2                 | 615                        | 490                            | 1.5                            | 860               | 125                 | -5.09            | -1.81               | 378                        | 3.28                              |
| Compound 3                 | 570                        | 420                            | 1.2                            | 780               | 150                 | -5.05            | -1.85               | 387                        | 3.20                              |
| Compound 4                 | 517                        | 403                            | 1.2                            | 718               | 114                 | -5.00            | -1.80               | 387                        | 3.20                              |
| Compound 5                 | 491                        | 408                            | 0.8                            | 685               | 083                 | -4.97            | -1.89               | 402                        | 3.08                              |
| <sup>a</sup> Calculated as | HOMO                       | and LUMO                       | level                          | obtained          | from                | cyclic           | voltammetry         | using                      | $E_{HOMO} = -e$                   |

Table S2. Cyclic voltammetry data and experimental HOMO, LUMO and optical band gap

 $(E_{ox}^{onset} + 4.4)$ . E<sup>optical</sup> onset values obtained from oxidation peak in cyclic voltagram.  $E_{LUMO} = \frac{E_{POMO}^{optical}}{g} + E_{HOMO}$ 

<sup>b</sup>Calculated as  $\lambda^{onset}$  values from absorption spectra in CH<sub>2</sub>Cl<sub>2</sub> solvent.

°Calculated as optical band gap calculated from absorption onset/edge using the equation  $e^{\left(\frac{E^{optical}}{g}\right)} = 1240/\lambda onset.$ 

**Table S3**. Selected transitions obtained from TD-DFT calculation with B3LYP/6-31+G\*\* level theory

| Entry                | λ    | Oscillator  | Energy | Selected Major Transitions <sup>a</sup>                                                 |
|----------------------|------|-------------|--------|-----------------------------------------------------------------------------------------|
|                      | (nm) | strength, f | (eV)   |                                                                                         |
|                      | 380  | 0.7314      | 3.25   | $H \rightarrow L (85\%)$                                                                |
|                      | 352  | 0.2626      | 3.51   | $H \rightarrow L+1 (38\%)$                                                              |
| 1 (H)                | 347  | 0.1952      | 3.56   | $H-2 \rightarrow L (24\%), H \rightarrow L+1 (18\%), H-5 \rightarrow L+6 (17\%)$        |
|                      | 330  | 0.0679      | 3.74   | $H-1 \rightarrow L (53\%)$                                                              |
|                      | 321  | 0.0420      | 3.85   | $H-4 \rightarrow L (53\%)$                                                              |
|                      | 445  | 0.0222      | 2.71   | $H-3 \rightarrow L+5 (29\%), H-6 \rightarrow L+4 (14\%)$                                |
|                      | 382  | 0.7112      | 3.23   | $H \rightarrow L (85\%)$                                                                |
|                      | 344  | 0.2913      | 3.59   | $H \rightarrow L+2 (18\%)$                                                              |
| 2                    | 353  | 0.2518      | 3.50   | $H \rightarrow L+2 (30\%)$                                                              |
| (OCH <sub>3</sub> )  | 347  | 0.1853      | 3.56   | $H-2 \rightarrow L (24\%), H-5 \rightarrow L+6 (16\%), H \rightarrow L+1 (15\%)$        |
|                      | 332  | 0.0745      | 3.72   | $H-1 \rightarrow L (53\%)$                                                              |
|                      | 322  | 0.0450      | 3.84   | $H-4 \rightarrow L (52\%)$                                                              |
|                      | 310  | 0.0377      | 3.99   | $H \rightarrow L+2 (91\%)$                                                              |
|                      | 401  | 0.4888      | 3.08   | $H \rightarrow L (89\%)$                                                                |
|                      | 357  | 0.4683      | 3.46   | $H \to L+1 (51\%), H-1 \to L (14\%)$                                                    |
|                      | 346  | 0.2454      | 3.57   | $H-4 \to L (32\%), H-2 \to L (25\%)$                                                    |
| 3 (CF <sub>3</sub> ) | 362  | 0.0963      | 3.42   | $H-1 \rightarrow L (28\%), H-3 \rightarrow L+5 (13\%)$                                  |
|                      | 352  | 0.0464      | 3.51   | $H-2 \rightarrow L (62\%)$                                                              |
|                      | 342  | 0.0375      | 3.61   | $H-3 \rightarrow L+1 (31\%), H-5 \rightarrow L+6 (15\%)$                                |
|                      | 331  | 0.0300      | 3.74   | $H-4 \rightarrow L (31\%)$                                                              |
|                      | 445  | 0.0260      | 2.78   | $H-3 \to L+5 (30\%)$                                                                    |
|                      | 360  | 0.7159      | 3.44   | $H \rightarrow L+1 \ (65\%)$                                                            |
|                      | 436  | 0.2386      | 2.84   | $H \rightarrow L (50\%)$                                                                |
|                      | 449  | 0.1413      | 2.76   | $ $ H-3 $\rightarrow$ L+5 (30%), H $\rightarrow$ L+1 (26%), H-6 $\rightarrow$ L+8 (12%) |
| 4 (CN)               | 350  | 0.1308      | 3.54   | $H-1 \rightarrow L+1 (31\%), H-2 \rightarrow L+6 (11\%)$                                |

|                      | 368 | 0.1228 | 3.36 | $H-4 \rightarrow L (74\%)$                                |
|----------------------|-----|--------|------|-----------------------------------------------------------|
|                      | 322 | 0.0619 | 3.84 | $H \rightarrow L+2 (93\%)$                                |
|                      | 498 | 0.0222 | 2.48 | $H-3 \to L+3 (40\%)$                                      |
|                      | 321 | 0.0152 | 3.85 | $H-1 \rightarrow L+1 (40\%)$                              |
|                      | 404 | 0.4633 | 3.06 | $H \rightarrow L+1 (89\%)$                                |
|                      | 358 | 0.4372 | 3.45 | $H \rightarrow L+2 (51\%)$                                |
|                      | 347 | 0.2233 | 3.56 | $H-5 \rightarrow L (32\%)$                                |
| 5 (NO <sub>2</sub> ) | 349 | 0.1743 | 3.55 | $H-4 \to L+1 (31\%)$                                      |
|                      | 355 | 0.0584 | 3.48 | $H-2 \to L+1 (64\%)$                                      |
|                      | 497 | 0.0290 | 2.49 | $H-3 \to L+6 (30\%)$                                      |
|                      | 446 | 0.0260 | 2.77 | $H-3 \rightarrow L+7 (30\%), H-5 \rightarrow L+10 (14\%)$ |

<sup>a</sup> H = HOMO; L = LUMO; only contributions above 10% are included.

**Table S4**. Density surfaces of the frontier orbitals involved in electronic transitions of chromophores **1-5** which is derived from B3LYP/6-31+G\*\* level of theory using isosurface value of 0.02 au.

| Orbitals | Compound 1 | Compound 2 | Compound 3 |
|----------|------------|------------|------------|
| HOMO-4   |            |            |            |
| НОМО-3   |            |            |            |
| НОМО-2   |            |            |            |

| HOMO-1 |  |  |
|--------|--|--|
| НОМО   |  |  |
| LUMO   |  |  |
| LUMO+1 |  |  |
| LUMO+2 |  |  |
| LUMO+3 |  |  |

| LUMO+4 |  |  |
|--------|--|--|
| LUMO+5 |  |  |

| Orbitals | Compound 4 | Compound 5 |
|----------|------------|------------|
| HOMO-4   |            |            |
| НОМО-3   |            |            |
| НОМО-2   |            |            |

| HOMO-1 |  |
|--------|--|
| НОМО   |  |
| LUMO   |  |
| LUMO+1 |  |
| LUMO+2 |  |

| LUMO+3 |  |
|--------|--|
| LUMO+4 |  |
| LUMO+5 |  |