Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Cu(II)-TACN complexes selectively induced antitumor activities in HepG-2 cells by DNA damage and mitochondrial-ROS-mediated apoptosis

Ming Liu,^{a,†}Xue-Qing Song,^{b,†} Yuan-Di Wu,^a Jing Qian,^{a*} Jing-Yuan Xu^{b*}

^aTianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China ^bTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and

Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China

*Corresponding authors: ^a<u>qianjinger@aliyun.com</u> (J. Qian) ^b<u>xujingyuan@tmu.edu.cn</u> (J.-Y. Xu) [†]These authors contributed equally.

A

B

D

Fig. S1.Synthesis of 4-benzyloxy-benzyl-tricyclo[5.2.1.0^{4.10}]decane chloride: (A) 400 MHz ¹HNMR (CDCl₃, 298 K); (B) 100 MHz ¹³CNMR (D₂O, 305 K); (C) ESI-mass spectrum.Attributions:337.22; (D)FTIR patterns.

С

D

Fig. S2.Synthesis of btacn: (A) 400 MHz ¹HNMR (CDCl₃, 298 K); (B) 100 MHz ¹³CNMR (CDCl₃, 305 K); (C) ESI-mass spectrum.Attributions:324.21, [M+H⁺]⁺; (D)FTIR patterns.

Fig. S3.FTIR patterns for Cu(btacn)Cl₂.

B

Fig. S4.(A) FTIR patterns for $Zn(btacn)Cl_2$. (B) Electrospray mass spectra and the isotope distribution patterns for $Zn(btacn)Cl_2$. Attributions: 426.113, $[M-Cl^-]^+$.

7

B

Fig. S5.(A)FTIR patterns for $[Cu(btacn)_2] \cdot (ClO_4)_2$. (B) Electrospray mass spectra and the isotope distribution patterns for $[Cu(btacn)_2] \cdot (ClO_4)_2$. Attributions:813.3, $[M-ClO_4^-]^+$.

Fig. S6. Absorption spectra of the compounds in the absence and presence of increasing amounts of CT-DNA at room temperature in 5 mMTris-HCl/NaCl buffer (pH 7.4), the dashed lines indicate the free compound. (A) [Cu(btacn)₂]·(ClO₄)₂(4.63 × 10⁻⁴M), CT-DNA (0.0, 2.2 × 10⁻⁵ M, 4.4 × 10⁻⁵ M, 6.4 × 10⁻⁵ M, 8.3 × 10⁻⁵ M, 1.0 × 10⁻⁴ M, 1.2 × 10⁻⁴ M, 1.36 × 10⁻⁴ M). (B) Cu(btacn)Cl₂ (2.0 × 10⁻⁴M), CT-DNA (0.0, 1.1 × 10⁻⁵M, 2.2 × 10⁻⁵ M, 3.3 × 10⁻⁵M, 4.4 × 10⁻⁵M, 5.5 × 10⁻⁵M, 6.6 × 10⁻⁵M). (C) Zn(btacn)Cl₂ (1.6 × 10⁻⁴M), CT-DNA (0.0, 2.0 × 10⁻⁵M, 4.0 × 10⁻⁵M, 6.0 × 10⁻⁵M, 8.0 × 10⁻⁵M, 1.0 × 10⁻⁴M, 1.2 × 10⁻⁴M). (D) btacn (1.0 × 10⁻⁵M), CT-DNA (0.0, 3.8 × 10⁻⁵M, 7.6 × 10⁻⁵M, 1.1 × 10⁻⁴M, 1.48 × 10⁻⁴M, 1.86 × 10⁻⁴M).

Fig. S7.Fluorescence quenching curves of the complexes to EB-DNA, $[DNA] = 6.0 \ \mu\text{M}$, $[EB] = 4.0 \ \mu\text{M}$ and Stern–Volmer plots of the fluorescence titrations (Insert figure): (1) $[Cu(btacn)Cl_2] = 0-175 \ \mu\text{M}$; (2) $[[Cu(btacn)_2] \cdot (ClO_4)_2] = 0-245 \mu\text{M}$.

Fig. S8.Various amounts of (1) Cu(btacn)Cl₂ and (2) $[Cu(btacn)_2] \cdot (ClO_4)_2$ were reacted with a constant concentration of DNA for 3 h at 37 °C in pH 7.4 Tris-HCl/NaCl buffer analyzed by agarosegel electrophoresis.

Fig.S9. Gel electrophoresis diagram showing the cleavage of pBR322 DNA in the presence of different additives at pH 7.4 and 37 °C for 24 h under aerobic condition: Lane 1: DNA control; Lane 2: DNA +2.0 mMCu(btacn)Cl₂ (A){0.5 mM[Cu(btacn)₂]·(ClO₄)₂(B)}; Lane 3–10: DNA + complex+ 1 mM DMSO; 200 Unit/ml SOD; 25 mM L-histidine; 200 Unit/ml catalase; 0.05 mM methyl green; 10 Unit/mL SYBR Green; 50 mM KI; 25 M NaN₃.

Table S1

-

Selected bond lengths (Å) and angles (°) for Cu(btacn)Cl₂.

Cu(1)-N(1)	2.264(18)	Cu(1)-Cl(1)	2.267(6)
Cu(1)-N(2)	2.039(19)	Cu(1)-Cl(2)	2.277(7)
Cu(1)-N(3)	2.038(18)		
N(1)-Cu(1)-Cl(1)	100.71(5)	Cl(1)-Cu(1)-Cl(2)	95.59(3)
N(1)-Cu(1)-Cl(2)	107.57(5)	N(3)-Cu(1)-Cl(1)	172.16(6)
N(2)-Cu(1)-Cl(1)	90.86(6)	N(3)-Cu(1)-Cl(2)	89.96(6)
N(2)-Cu(1)-N(1)	83.33(7)	N(3)-Cu(1)-N(2)	82.55(8)
N(2)-Cu(1)-Cl(2)	165.97(6)	N(3)-Cu(1)-N(1)	82.81(7)

Table S2

Crystal data and structure refinement for Cu(btacn)Cl₂.

complex	Cu(btacn)Cl ₂		
CCDC number	1557714		
Empirical formula	$C_{20}H_{27}Cl_2CuN_3O$		
Formula weight	459.88		
Crystal system	orthorhombic		
Space group	P_{bca}		
Temperature(K)	154.4(2)		
<i>a</i> (Å)	8.1762(3)		
<i>b</i> (Å)	12.4060(4)		
<i>c</i> (Å)	40.2745(12)		
α(°)	90		
β (°)	90		
γ(°)	90		
Z	8		
Calculated density (mg/m ³)	1.495		
Absorption coefficient (mm ⁻¹)	1.346		
F(000)	1912.0		
Crystal size (mm ³)	$0.25\times0.18\times0.17$		
Limiting indices	$-9 \le h \le 9, -14 \le k \le 12, -46 \le l \le 47$		
Reflections collected	36032		
Independent reflections	3601 [$R_{\text{int}} = 0.0475, R_{\text{sigma}} = 0.0236$]		
Data / restraints / parameters	3601/0/244		
Goodness-of-fit on F ²	1.051		
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0301, wR_2 = 0.0686$		
R indices (all data)	$R_1 = 0.0349, wR_2 = 0.0718$		

Table S3

Electronic absorption spectral data between CT-DNA with synthesized compounds in Tris-HCl buffer solution.

Compounds		$[Cu(btacn)_2] \cdot (ClO_4)_2$	Cu(btacn)Cl ₂	Zn(btacn)Cl ₂	btacn
Band position $(\pi - \pi^*)\lambda$ max (nm)	Free	240	237	217.2	201
	Bound	242	237.2	219.4	203
Red shift $\Delta\lambda$		2	0.2	2.2	2
Chromism effect (%)		34.8	19.4	24.2	16.0
Band position $(n-\pi)\lambda$ max (nm)	Free	270	269	_	-
	Bound	272	269.8	_	-
Red shift $\Delta\lambda$		2	0.8	_	-
Chromism effect (%)		18.8	23.8	-	-