Supporting information for

Copper(II)-based coordination polymer nanofibers as highly effective antibacterial material with synergistic mechanism

Abdul Rauf,^a Junwei Ye,^{*,a} Siqi Zhang,^a Ye Qi,^a Guangyao Wang,^a Ying Che^{*,b} Guiling Ning^{*,a,c}

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.

^b Department of Ultrasound, the first Affillated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, PR China.

^c Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province, 116024, P. R. China.

Fig. S1 (a), (b) View of coordination environment of Cu^{2+} centres in macro particle of

[Cu(HBTC)(H₂O)₃]

Fig. S2 EDS spectra of (a) macroparticle, (b) nanofiber of [Cu(HBTC)(H₂O)₃]

Fig. S3 IR-Spectra of macro particles and nanofibers of [Cu(HBTC)(H₂O)₃]

Fig. S4 Thermo-gravimetric curve of macroparticles and nanofibers of $[Cu(HBTC)(H_2O)_3]$

Fig. S5 The XRD patterns of nanofibers before (a) and after (b) immersing into distilled water for 24 h.

Fig. S6 Colony count Percentage of inhibition *E. coli* (a) and *S. aureus* (b) after being treated with the Cu(NO₃)₂, macroparticles and nanofibers with 250 μg/mL concentration.

Empirical formula	$C_9H_{10}CuO_9$
Formula weight	325.72
Crystal system	Monoclinic, $P2_1/c$
<i>T</i> (K)	296(2)
<i>a</i> (Å)	6.8432(5)
<i>b</i> (Å)	18.8678(13)
<i>c</i> (Å)	10.6835(6)
β (°)	126.782(4)
Volume (Å ³)	1104.80(13)
Ζ	4
D_{Calc} (mg/m ⁻³)	1.958
μ (mm ⁻¹)	2.021
$F_{(000)}$	660
$R_{ m int}$	0.0256
GOF on F ²	1.017
$R_1 [I > 2\sigma(I)]^*$	0.0372
$wR_2 [I \ge 2\sigma(I)]^*$	0.1020
R_1 (all data) *	0.0544
wR_2 (all data)*	0.1193
$*R_{l} = \Sigma F_{o} - F_{c} / \Sigma F_{o} ; wR_{l}$	$_{2} = \{ \Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma[w(F_{o}^{2})]^{2} \}^{1/2}$

Table S1 Crystal data and structure refinement for $[Cu(HBTC)(H_2O)_3]$

Cu(1)-O(2)	1.9176(16)	Cu(1)-O(8)	1.982(2)
Cu(1)-O(4) ^{#1}	1.9289(16)	Cu(1)-O(9)	2.2584(17)
Cu(1)-O(7)	1.988(2)	O(4) ^{#1} -Cu(1)-O(7)	88.42(8)
O(2)-Cu(1)-O(4) ^{#1}	174.43(7)	O(4) ^{#1} -Cu(1)-O(8)	91.08(8)
O(2)-Cu(1)-O(7)	87.30(8)	O(7)-Cu(1)-O(9)	95.25(9)
O(2)-Cu(1)-O(8)	93.79(8)	O(8)-Cu(1)-O(7)	169.26(9)
O(2)-Cu(1)-O(9)	90.28(7)	O(8)-Cu(1)-O(9)	95.43(8)

Table S2. Selected bond lengths [Å] and angles $[\circ]$ for $[Cu(HBTC)(H_2O)_3]$

Symmetry transformations used to generate equivalent atoms: #1 -x, y-1/2, -z+1/2.

D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
O(5)-H(5)····O(3) ^{#1}	0.83	1.76	2.569(2)	164.0
O(7)-H(7A)···O(5) ^{#2}	0.88	2.01	2.867(3)	166.2
O(7)-H(7B)····O(1) ^{#3}	0.86	1.85	2.685(3)	161.6
O(8)-H(8A)····O(4) ^{#4}	0.87	2.29	3.123(3)	160.2
O(8)-H(8A)····O(9) ^{#5}	0.87	2.63	3.092(3)	114.4
O(8)-H(8B)…O(1) ^{#6}	0.87	1.86	2.707(3)	164.6
O(9)-H(9A)····O(3) ^{#7}	0.87	2.40	3.067(3)	133.5
O(9)-H(9B)····O(6) ^{#8}	0.89	1.91	2.795(3)	169.4

Table S3. Hydrogen bonds for $[Cu(HBTC)(H_2O)_3]$ [Å and °]

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z+1; #2 -x+1,-y,z+1; #3 x,-y-1/2,z-1/2 #4 -x,-y,-z+1; #5 x,-y-1/2,z+1/2; #6 x-1,-y-1/2,z-1/2; #7 -x-1,y,-z; #8 x-1,y,z-1 Table S4. Results of the percentage of inhibition of bacterial growth by colony count method $(250 \ \mu g/mL)$

Materials	Microorganism	Percentage of inhibition of
		bacterial growth
		$K = (N_{control} - N_{sample}) / N_{control} \times 100\%$
Commercial Cu-NPs	E. coli	24.0 %
	S. aureus	24.3 %
Marcoparticles	E. coli	96.7 %
	S. aureus	96.2 %
Nanofibers	E. coli	99.9 %
	S. aureus	99.1 %

E. coli = Escherichia coli; *S. aureus* = Staphylococcus aureus

11