Supplementary information

New layered chromium chalcogenides CsLiCrSe₂, RbLiCrS₂ and CsLiCrS₂: structure and properties

Xiaoning Sun,^{a,b} Yanpeng Song,^{a,b} Jun Deng,^{a,b} Shifeng Jin,^{*a,c} and Xiaolong Chen ^{*a,b,c,d}

^aResearch and Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China. ^cSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China ^dSongshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.

	CsLiCrSe2	CsLiCrS2	RbLiCrS2		
Space group	I4/mmm (No. 139)				
<i>a</i> (Å)	4.4185(2)	4.2678(1)	4.1799(2)		
<i>c</i> (Å)	13.8002(7)	13.2824(3)	12.9501(8)		
V (ų)	269.42(2)	241.93(1)	226.26(2)		
R _p (%)	5.84	6.24	4.36		
R _{wp} (%)	7.38	8.32	5.59		
R _{exp} (%)	4.52	4.93	3.73		
χ^2	2.67	2.85	2.25		
ch Cruii ch (?)	120.2(1) × 2	125.0(1) × 2	121.1(1) × 2		
CH-CT/LI-CH()	104.35(5) × 4	102.30(5) × 4	103.96(6) × 4		
d(Cr/Li- <i>Ch</i>) (Å)	2.547(1) × 4	2.414(2) × 4	2.397(2) × 4		
A= Cs, Rb (x, y ,z)	2a (0, 0, 0)				
A= Cs, Rb occupancy		1			
A= Cs, Rb U _{iso} (Ų)	0.025(1)	0.0263(6)	0.0252(8)		
Cr/Li (x, y ,z)	4d (0, 0.5, 0.25)				
Cr/Li occupancy	1				
Cr/Li U _{iso} (Å ²)	0.055(2)	0.028(1)	0.044(1)		
<i>Ch</i> = Se, S (x, y ,z)	4d (0, 0, 0.3419(2))	4d (0, 0, 0.3350(2))	4d (0, 0, 0.3407(3))		
Ch= Se, S occupancy		1			
Ch=Se, S U_{iso} (Å ²)	0.021(1)	0.023(1)	0.029(1)		

Table S1 Summary of Rietveld refinement parameters for CsLiCrSe₂, CsLiCrS₂ and RbLiCrS₂.

Fig S1 XRD patterns and the identified products for the failed reactions list in Table 1.

Fig S2 (a) Electron microscope image, (b) the XRD pattern and photograph of CsLiCrSe₂ single crystal (nominal).

Nominal formula	Formula from refinements	Formula from EDS & ICP-AES	<i>a</i> (Å)	c (Å)	Т _s (К)
Cs(Li _{0.55} Cr _{0.45}) ₂ Se ₂	Cs(Li _{0.552} Cr _{0.448}) ₂ Se ₂	$Cs_{1.10(5)}(Li_{0.62(3)}Cr_{0.42(2)})_2Se_2$	4.41603(18)	13.82173(65)	8
$Cs(Li_{0.5}Cr_{0.5})_2Se_2$	$Cs(Li_{0.496}Cr_{0.504})_2Se_2$	$Cs_{1.08(5)}(Li_{0.55(3)}Cr_{0.50(3)})_2Se_2$	4.41855(21)	13.80022(69)	15
Cs(Li _{0.45} Cr _{0.55}) ₂ Se ₂	Cs(Li _{0.424} Cr _{0.576}) ₂ Se ₂	$Cs_{0.97(5)}(Li_{0.46(2)}Cr_{0.59(3)})_2Se_2$	4.43787(20)	13.72584(71)	18

Table S2 Chemical compositions, lattice parameters and spin-glass transiton temperature in Cs(Li_{1-x}Cr_x)₂Se₂.

Table S3 Comparison of lattice parameters, bond length d(M'/M-Ch) and bond angle β in $AM'MCh_2$.

	a (Å)	<i>c</i> (Å)	d(<i>M'/M-Ch</i>) (Å)	β(°)
KLiFeSe ₂ ¹	4.1044(2)	13.7194(9)	2.5050 (1)	110.020(2)
RbLiFeSe ₂ ¹	4.1609(1)	14.0420(5)	2.5218 (2)	111.172(1)
KCoCuS ₂ ²	3.8831(9)	13.058(1)	2.5198(4)	100.8019
RbCoCuS ₂ ²	3.9314(5)	13.448(2)	2.5691(3)	99.8399
CsCoCuS ₂ ²	3.9667(9)	13.833(4)	2.6313(5)	97.8348
KLiMnS ₂ ³	4.070(3)	13.227(7)	2.439(4)	113.0(2)
RbLiMnS ₂ ³	4.106(2)	13.579(6)	2.4765(9)	111.9888
CsLiMnS ₂ ³	4.168(5)	14.006(9)	2.592(3)	107.0504
KLiZnS ₂ ³	3.998(2)	13.262(6)	2.411(4)	111.9(2)
RbLiZnS ₂ ³	4.046(2)	13.537(5)	2.4493(9)	111.37

1. D. D. Yuan, N. Liu, K. K. Li, S. F. Jin, J. G. Guo and X. L. Chen, *Inorg Chem*, 2017, **56**, 13187 13193.

2. M. Oledzka, J. G. Lee, K. V. Ramanujachary and M. Greenblatt, *J Solid State Chem*, 1996, **127**, 151-160.

3. D. Schmitz and W. Bronger, *Z Anorg Allg Chem*, 1987, **553**, 248-260.

Fig S3 Zero-field-cooled (ZFC) and field-cooled (FC) susceptibilities of (a) RbLiCrS₂ single crystal for H // *c* axis and (b) CsLiCrS₂ powder sample at H= 1 kOe. Insets show their M-H curves, respectively. (c) ZFC and FC curves of RbLiCrS₂ single crystal under different magnetic fields.

Fig S4 ZFC and FC curves of (a-c) $Cs(Li_{1-x}Cr_x)_2S_2$ and (d-e) $Rb(Li_{1-x}Cr_x)_2S_2$ with different x. x is obtained from Rietveld refinements.

Fig S5 T_s in $A(Li_{1-x}Cr_x)_2Ch_2$ (A = Cs, Rb, Ch = S,Se)drawn against lattice parameter (a) a and (b) c.

Since the Cr concentration x affects both lattice parameters and the spin-glass temperature T_s , the relationship between lattice parameters and T_s can be established via x in $Cs(Li_{1-x}Cr_x)_2Se_2$, $Cs(Li_{1-x}Cr_x)_2S_2$ and $Rb(Li_{1-x}Cr_x)_2S_2$. As shown in Fig S6, higher T_s corresponds to larger *a* and smaller *c*. However, when the $A(Li_{1-x}Cr_x)_2Ch_2$ system is considered as a whole, T_s shows no clear dependence on *a* or *c*.