Neutral and cationic phosphine and arsine complexes of tin(IV) halides: synthesis, properties, structures and anion influence

ESI

Victoria K. Greenacre, Rhys P. King, William Levason and Gillian Reid.* School of Chemistry, University of Southampton. Southampton SO17 1BJ. U.K.

Supporting Information

Figure S1 [SnCl ₄ (AsEt ₃) ₂]	2
Figure S2 $[SnBr_4(AsEt_3)_2]$	4
Figure S3 [SnCl ₃ (AsEt ₃) ₂ OTf]	7
Figure S4 [SnCl ₃ (PMe ₃) ₂ OTf]	9
Figure S5 [SnCl ₃ (PEt ₃) ₂ OTf]	12
Figure S6 [SbEt ₃ Cl(OTf)]	15
Figure S7 $[SnCl_3 \{o-C_6H_4(PMe_2)_2\}][AlCl_4]$	17
Figure S8 $[SnCl_2 \{o-C_6H_4(PMe_2)_2\}][AlCl_4]_2$	20
Figure S9 [SnCl ₃ (PEt ₃) ₂][AlCl ₄]	23
Figure S10 $[SnCl_2(PEt_3)_2][AlCl_4]_2$	26
Figure S11 [SnCl ₃ (PEt ₃) ₂][BAr ^F]	29
Figure S12 [SnCl ₃ (AsEt ₃) ₂][BAr ^F]	32
Figure S13 [SnCl ₃ { o -C ₆ H ₄ (PMe ₂) ₂ }][BAr ^F]	35
Figure S14 [SnBr ₃ (AsEt ₃) ₂][BAr ^F]	37
Table S1. X-ray crystallographic data	39
Figure S15 Structure of [Et ₃ SbCl(OTf)]	41
NMR data for R_3SbX_2	41
Computational details	42
Table S2 Bond lengths and angles for optimised structures	43
Table S3 Bond lengths and angles for optimised free ligands	47
Table S4 Average E-C bond distances and C-E-C angles	48
Table S5 NBO data for optimised coordination complexes	48
Table S6 Frontier Molecular Orbitals for [MX ₃ (SbR ₃)] complexes	50
Table S7 Relative Orbital Energies	52
References	52

Figure S1 [SnCl₄(AsEt₃)₂]

Figure S1.1 [SnCl₄(AsEt₃)₂]: ¹H NMR (CD₂Cl₂, 295 K): $\delta = 2.31$ (q, [12H], ³*J*_{H-H} = 7.6 Hz, CH₂), 1.39 (t, [18H], ³*J*_{H-H} = 7.6 Hz, CH₃). * *impurity due to decomposition/oxidation*

анарания интернорования и продоктивности программи и З 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7

Figure S1.3 [SnCl₄(AsEt₃)₂]: ${}^{13}C{}^{1}H$ } NMR (CDCl₃, 295 K): $\delta = 8.62$ (CH₂), 15.04 (CH₃).

Figure S1.5 [SnCl₄(AsEt₃)₂]: IR (Nujol/cm⁻¹) = 288 (Sn-Cl).

Figure S2 [SnBr₄(AsEt₃)₂]

Figure S2.1 [SnBr₄(AsEt₃)₂]: ¹H NMR (CD₂Cl₂, 295 K): δ = 2.35 (q, [12H], ³*J*_{H-H} = 7.6 Hz, CH₂), 1.43 (t, [18H], ³*J*_{H-H} = 7.6 Hz, CH₃).

Figure S2.2 [SnBr₄(AsEt₃)₂]: ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 295 K): $\delta = 8.5$ (CH₂), 14.8 (CH₃).

^{24 22 20 18 16 14 12 10 8 6 4 2}

Figure S2.3 [SnBr₄(AsEt₃)₂]: ¹¹⁹Sn NMR (CD₂Cl₂, 295 K): $\delta = -1173.4$.

Figure S2.4 [SnBr₄(AsEt₃)₂]: ¹¹⁹Sn NMR (CD₂Cl₂, 193 K): δ –1125.3.

Figure S2.5 [SnBr₄(AsEt₃)₂]: IR (Nujol/cm⁻¹) = 210s (Sn-Br).

Figure S3 [SnCl₃(AsEt₃)₂OTf]

Figure S3.1 [SnCl₃(AsEt₃)₂OTf]: ¹H NMR (CD₂Cl₂, 295 K): $\delta = 2.38$ (q, [12H], ³*J*_{H-H} = 7.8 Hz, CH₂), 1.39 (t, [18H], ³*J*_{H-H} = 7.8 Hz, CH₃). * *impurity due to ligand chlorination*.

Figure S3.2 [SnCl₃(AsEt₃)₂OTf]: ${}^{13}C{}^{1}H$ } NMR (CD₂Cl₂, 295 K): $\delta = 9.0$ (CH₂), 16.0 (CH₃). * *impurity due to ligand chlorination*.

Figure S3.4 [SnCl₃(AsEt₃)₂OTf]: ¹¹⁹Sn{¹H} NMR (CD₂Cl₂, 183 K): δ = -620

Figure S3.5 [SnCl₃(AsEt₃)₂OTf]: IR (Nujol/cm⁻¹) = 294s, 378w (Sn-Cl), 1156m (-OSO₂), 1231m, 1200m (CF₃).

Figure S4 [SnCl₃(PMe₃)₂OTf]

Figure S4.1 [SnCl₃(PMe₃)₂OTf]: ¹H NMR (CD₂Cl₂, 295 K): δ = 1.84 (m)

* *Hydrolysis/decomposition*.

Figure S4.2 [SnCl₃(PMe₃)₂OTf]: ¹³C{¹H} (CD₂Cl₂, 295 K): $\delta = 10.09$ (t, ¹J +³J_{31P-13C} = 19.4 Hz, CH₃). * *Hydrolysis/decomposition*.

Figure S4.3 [SnCl₃(PMe₃)₂OTf]: ${}^{19}F{}^{1}H$ } (CD₂Cl₂, 295 K): δ = -78.6.

Figure S4.5 [SnCl₃(PMe₃)₂OTf]: ¹¹⁹Sn (CD₂Cl₂, 298 K): $\delta = -516$ (t, ¹*J*_{P-119Sn} = 2963 Hz).

-500

-520

-540

-560

-420

-400

-440

-460

-480

10

-580 Chemical Shift (ppm)

Figure 4.6 [SnCl₃(PMe₃)₂OTf]: IR (Nujol/cm⁻¹) = 296m, 306m, 377w (Sn-Cl), 1173m (- OSO_2), 1200m, 1235m (CF₃).

Figure S5 [SnCl₃(PEt₃)₂OTf]

Figure S5.1 [SnCl₃(PEt₃)₂OTf]: ¹H NMR (CD₂Cl₂, 295 K): δ = 1.30 (m, [18H], CH₃), 2.33 (m, [12H], CH₂) * *Hydrolysis/decomposition*.

Figure S5.2 [SnCl₃(PEt₃)₂OTf]: ¹³C{¹H} (CD₂Cl₂, 295 K): $\delta = 7.59$ (t, ¹J +³J_{31P-13C} = 2.93 Hz, CH₂), 13.95 (t, ¹J +³J_{31P-13C} = 11 Hz, CH₃).

Figure S5.3 [SnCl₃(PEt₃)₂OTf]: ¹⁹F{¹H} (CD₂Cl₂, 295 K): $\delta = -78.6$.

Figure S5.4 [SnCl₃(PEt₃)₂OTf]: ³¹P{¹H} (CD₂Cl₂, 298 K): $\delta = 28.45$ * *Hydrolysis/decomposition*.

Figure S5.5 [SnCl₃(PEt₃)₂OTf]: ³¹P{¹H} (CD₂Cl₂, 183 K): $\delta = 33.58$ (s, ¹*J*_{31P-117Sn} = 2617 Hz, ¹*J*_{31P-119Sn} = 2734 Hz) * *Hydrolysis/decomposition*.

Figure S5.5 [SnCl₃(PEt₃)₂OTf]: ¹¹⁹Sn (CD₂Cl₂, 298K): δ = 535.

Figure S5.6 [SnCl₃(PEt₃)₂OTf]: ¹¹⁹Sn (CD₂Cl₂, 183K): $\delta = -535$ (t, ¹*J*_{31P-119Sn} = 2737 Hz).

Figure S5.7 [SnCl₃(PEt₃)₂OTf]: IR (Nujol/cm⁻¹): v = 289m, 301w, 374w (Sn-Cl), 1187m (-OSO₂), 1235m (CF₃).

) -520 -530 -540 -550 -560

--570

-580

-590

Chemical Shift (ppm)

4000

3800

3600

3400 3200

-440

-450

-470

-460

-480

-490

-510

-500

2400

2200

2000

1800

1600

1400

1200

1000 800

Figure S6 [SbEt₃Cl(OTf)]

Figure S6.1 [SbEt₃Cl(OTf)]: ¹H NMR (CD₂Cl₂, 295 K): $\delta = 1.62$ (t, [9H], ³J_{HH} = 7.7 Hz, CH₃), 2.80 (q, [6H], ³J_{HH} = 7.7 Hz, CH₂).

Figure S6.2 [SbEt₃Cl(OTf)]: ${}^{13}C{}^{1}H$ } (CD₂Cl₂, 295 K): $\delta = 9.68$ (CH₂), 28.55 (CH₃).

50 45 40 35 30 25 20 15 10 Chemical Shift (ppm)

Figure S6.3 [SbEt₃Cl(OTf)]: IR (Nujol/cm⁻¹): v = 329m (Sb-Cl), 1167w (-OSO₂), 1198w, 1235w (CF₃).

[SnCl3(SbEt3)2)[OTf].sp

4000 3800 3600 3400

3200

3000 2800

2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 Wavenumber (cm-1)

Figure S7 [SnCl₃{o-C₆H₄(PMe₂)₂}][AlCl₄]

Figure S7.1 [SnCl₃{o-C₆H₄(PMe₂)₂}][AlCl₄]: ¹H NMR (CD₂Cl₂, 295 K): δ = 2.06 (t, ²J +⁵J_{P-H} = 4.5 Hz, [12H], CH₃), 7.86-7.92 (m, [4H], Ar-H).

148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 Chemical Shift (ppm)

Figure S7.3 [SnCl₃{o-C₆H₄(PMe₂)₂}][AlCl₄]: ²⁷Al NMR (CD₂Cl₂, 295 K): δ = 102.8 (s, [AlCl₄]⁻); the broad feature is due to Al in the probe.

= 972 Hz).

-368

-376

-384

-392

-400

-408

-416

-424

-432

-440

-448

-456

-464

-472

-480

-488

-496 Chemical Shift (ppm)

Figure S7.6 [SnCl₃{o-C₆H₄(PMe₂)₂}][AlCl₄]: IR (Nujol/cm⁻¹): v = 322m, 342m (Sn-Cl), 451m, 497br ([AlCl₄]⁻).

Figure S8 [SnCl₂{*o*-C₆H₄(PMe₂)₂}][AlCl₄]₂

Figure S8.1 [SnCl₂{o-C₆H₄(PMe₂)₂}][AlCl₄]₂: ¹H NMR (CD₂Cl₂, 295 K): δ = 2.18 (t, ²J +⁵J_{PH} = 4.5 Hz, [12H], CH₃), 7.94-8.30 (m, [4H], Ar-H.)

Figure S8.2 [SnCl₂{o-C₆H₄(PMe₂)₂}][AlCl₄]₂: ¹³C{¹H} NMR (CD₂Cl₂, 295 K): δ = 12.28 (t, ¹*J*+³*J*_{31P-13C} = 16.1 Hz, CH₃), 129.8-130.1, 134.4, 135.9 (Ar-H).

Figure S8.3 [SnCl₂{o-C₆H₄(PMe₂)₂}][AlCl₄]₂: ²⁷Al NMR (CD₂Cl₂, 295 K): δ 102.9 (s, [AlCl₄]⁻); the broad feature is due to Al in the probe.

Figure S8.5 [SnCl₂{o-C₆H₄(PMe₂)₂}][AlCl₄]₂: ¹¹⁹Sn NMR (CD₂Cl₂, 298 K): δ = -429 (br, t, ¹J_{31P-119Sn} = 880 Hz).

Muningaran wantan haran and an and

-330 -340 -350 -360 -370 -380 -390 -400 -410 -420 -430 -440 -450 -460 -470 -480 -490 -500 Chemical Shift (ppm)

Figure S8.6 [SnCl₂{o-C₆H₄(PMe₂)₂}][AlCl₄]₂: IR (Nujol/cm⁻¹): v = 294m, 310m (Sn-Cl), 452sh, 487s ([AlCl₄]⁻).

[SnCl2(diphos)][AlCl4)2 2.sp Wavenumber (cm-1)

Figure S9 [SnCl₃(PEt₃)₂][AlCl₄]

Figure S9.1 [SnCl₃(PEt₃)₂][AlCl₄]: ¹H NMR (CD₂Cl₂, 295 K): δ = 1.36 (m, [18H], CH₃), 2.32 (m, [12H], CH₂).

2208 Hz, ${}^{1}J_{31P-119Sn} = 2317$ Hz) * *impurity due hydrolysis*.

-50 -100 -150 -200 -250 -300 -350 -400 -450 -500 -550 -600

-650Chemical Shift (ppm)

Figure S9.6 [SnCl₃(PEt₃)₂][AlCl₄]: IR (Nujol/cm⁻¹): v = 280m, 289m (Sn-Cl), 484s, 503sh ([AlCl₄]⁻). ^{[SnCl3(PEl3)2][AlCl₄]sp}

3000 2800

2200 2000

600 Wavenumber (cm-1)

Figure S10 [SnCl₂(PEt₃)₂][AlCl₄]₂

Figure S10.1 [SnCl₂(PEt₃)₂][AlCl₄]₂: ¹H NMR (CD₂Cl₂, 295K): δ = 1.39 (m, [18H], CH₃), 2.38 (m, [12H], CH₂).

Figure S10.3 [SnCl₂(PEt₃)₂][AlCl₄]₂: ²⁷Al NMR (CD₂Cl₂, 295 K): $\delta = 103.0 * impurity of [AlCl₃(PEt₃)].$

Figure S11 [SnCl₃(PEt₃)₂][BAr^F]

Figure S11.1 [SnCl₂(PEt₃)₂][BAr^F]: ¹H NMR (CD₂Cl₂, 295 K): δ = 1.35 (m, [18H], CH₃), 2.29 (m, [12H], CH₂), 7.57 (s, [4H], [Bar^F]), 7.72 (m, [8H], [Bar^F])

Figure S11.2 [SnCl₃(PEt₃)₂][BAr^F]: ¹³C{¹H}NMR (CD₂Cl₂, 295 K): $\delta = 7.84$ (t, ²*J*+⁴*J*_{31P}. _{13C} = 2.9 Hz, -CH₃), 14.51 (t, ¹*J* +³*J*_{31P-13C} = 11.7 Hz), 118.1(s), 123.8(s), 126.5(s), 129.3(m), 135.4(s), 162.3(q, ¹*J*_{11B-13C} = 49.9)

Figure S11.3 [SnCl₃(PEt₃)₂][BAr^F]: ${}^{19}F{}^{1}H$ } NMR (CD₂Cl₂, 295 K): $\delta = -63.0$ (s, -CF₃)

Figure S11.5 [SnCl₃(PEt₃)₂][BAr^F]: ¹¹⁹Sn NMR (CD₂Cl₂, 298 K): δ = -379 (t, ¹J_{31P-119Sn} = 2311 Hz)

Figure S12 [SnCl₃(AsEt₃)₂][BAr^F]

Figure S12.1 [SnCl₃(AsEt₃)₂][BAr^F]: ¹H NMR (CD₂Cl₂, 295 K): $\delta = 1.44$ (t, ³*J*_{HH} = 7.7 Hz, [18H], CH₃), 2.42 (q, ³*J* = 7.7 Hz, [12H], CH₂), 7.57 (s, [4H], [BAr^F]), 7.72 (m, [8H], [BAr^F])

Figure S12.2 [SnCl₃(AsEt₃)₂][BAr^F]: ¹³C{¹H}NMR (CD₂Cl₂, 295 K): $\delta = 9.00$ (s, -CH₃), 14.3 (br s, -CH₂), 118.1(s), 123.8(s), 126.5(s), 129.3(m), 135.4(s), 162.3(q, ¹J_{11B-13C} = 49.9)

Figure S12.3 [SnCl₃(AsEt₃)₂][BAr^F]: ¹⁹F{¹H} NMR (CD₂Cl₂, 295 K): δ = -63.0 (s, -CF₃)

Figure S12.4 [SnCl₃(AsEt₃)₂][BAr^F]: ¹¹⁹Sn NMR (CD₂Cl₂, 183 K): δ = -388 (br s)

Figure S12.5 : IR (Nujol/cm⁻¹) = 285 (Sn-Cl)

Figure S13 [SnCl₃{o-C₆H₄(PMe₂)₂}][BAr^F]

Figure S13.1 [SnCl₃{o-C₆H₄(PMe₂)₂}][BAr^F]: ¹H NMR (CD₂Cl₂, 295 K): $\delta = 2.01$ (t, ²J +⁵J_{PH} = 4.7 Hz, [12H], CH₃), 7.57 (s, [4H], [BAr^F]), 7.72 (m, [8H], [BAr^F]), 7.82 (m, [4H], [BAr^F])

Figure S13.2 [SnCl₃{o-C₆H₄(PMe₂)₂}][BAr^F]: ³¹P{¹H} NMR (CD₂Cl₂, 295 K): δ = -24.50 (¹J_{31P-Sn} = 1007 Hz)

Figure S13.3 [SnCl₃{o-C₆H₄(PMe₂)₂}][BAr^F]: ¹⁹F{¹H} NMR (CD₂Cl₂, 295 K): δ = -63.0 (s, -CF₃)

Figure S14 [SnBr₃(AsEt₃)₂}][BAr^F]

Figure S14.1 [SnBr₃(AsEt₃)₂][BAr^F]: ¹H NMR (CD₂Cl₂, 295 K): $\delta = 1.39$ (t, ³*J*_{HH} = 7.6 Hz, [18H], CH₃), 2.42 (br, [12H], CH₂), 7.58 (s, [4H], [Bar^F]), 7.73 (m, [8H], [Bar^F])

Figure S14.2 [SnBr₃(AsEt₃)₂][BAr^F]: ¹³C{¹H}NMR (CD₂Cl₂, 295 K): $\delta = 9.1$ (s, -CH₃), 15.9 (s, -CH₂), 118.1(s), 123.8(s), 126.5(s), 129.3(m), 135.4(s), 162.3(q, ¹J_{11B-13C} = 49.9 Hz)

Figure S14.3 [SnBr₃(AsEt₃)₂][BAr^F]: ${}^{19}F{}^{1H}$ NMR (CD₂Cl₂, 295 K): $\delta = -62.9$

Table S1. X-Ray crystallographic data^a

Compound	[SnCl ₄ (AsEt ₃) ₂]	[SnBr ₄ (AsEt ₃) ₂]	[SnCl ₃ (AsEt ₃) ₂ (OTf)]
Formula	C ₆ H ₁₅ AsCl ₂ Sn _{0.5}	$C_{12}H_{30}As_2Br_4Sn$	$C_{13}H_{30}As_2Cl_3F_3O_3SSn$
М	292.34	762.53	698.31
Crystal system	monoclinic	orthorhombic	orthorhombic
Space group (no.)	P 2 ₁ /n (14)	P b c a (61)	P c a 2 ₁ (29)
a /Å	7.1388(2)	13.8250(2)	13.21000(10)
b/Å	12.1065(2)	11.0254(2)	13.77830(10)
<i>c</i> /Å	11.9952(3)	14.4329(2)	13.2995(2)
α/°	90	90	90
β/°	91.301(2)	90	90
γ /°	90	90	90
<i>U</i> /Å ³	1036.43(4)	2199.95(6)	2420.66(4)
Ζ	4	4	4
μ(Mo-K _α) /mm ⁻¹	4.905	11.401	4.220
F(000)	572	1432	1368
Total number refins	27819	55967	66478
R _{int}	0.036	0.059	0.026
Unique reflns	3286	3615	7702
No. of params,	91, 0	91, 0	242, 1
restraints			
GOF	1.019	0.938	1.059
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.020, 0.036	0.036, 0.110	0.020, 0.042
R_1 , w R_2 (all data)	0.030, 0.038	0.044, 0.116	0.022, 0.042

 $\frac{1}{a \text{ Common items: } T = 293 \text{ K}; \text{ wavelength (Mo-K_{\alpha}) = 0.71073 Å; } \theta(\text{max}) = 27.5^{\circ}; {}^{b}\text{ R1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; } WR_{2} = [\Sigma W(F_{o}^{2} - F_{c}^{2})_{2} / \Sigma WF_{o}^{4}]^{1/2}}$

Compound	[SnCl ₃ (PMe ₃) ₂ (OTf)]	[SnCl ₅ (AsEt ₃)][ClAsEt ₃]	[SnCl ₂ (PEt ₃) ₃][AlCl ₄] ₂
Formula	C ₇ H ₁₈ Cl ₃ F ₃ O ₃ P ₂ SSn	C ₁₂ H ₃₀ As ₂ Cl ₆ Sn	$C_{18}H_{45}Al_2Cl_{10}P_3Sn$
М	526.25	655.59	881.60
Crystal system	monoclinic	monoclinic	monoclinic
Space group (no.)	P 2 ₁ /n (14)	P 2 ₁ /n (14)	P 2 ₁ /n (14)
a /Å	12.0116(4)	11.6759(3)	14.9000(3)
b/Å	12.9896(5)	10.3481(2)	25.4564(3)
<i>c</i> /Å	12.1849(3)	19.4678(5)	20.3339(4)
α/°	90	90	90
β/°	101.720(3)	92.168(3)	99.560(2)
γ/°	90	90	90
<i>U</i> /Å ³	1861.52(11)	2350.48(10)	7605.5(2)
Ζ	4	4	8
μ(Mo-K _α) /mm ⁻¹	2.114	4.556	1.558
F(000)	1032	1280	3552
Total number reflns	38860	14864	83974
R _{int}	0.095	0.031	0.062
Unique reflns	5809	5392	14932
No. of params,	187, 0	196, 0	631, 0
restraints			
GOF	0.966	0.922	1.043
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.051, 0.131	0.034, 0.119	0.057, 0.136
R_1 , w R_2 (all data)	0.076, 0.152	0.041, 0.125	0.089, 0.154

^a Common items: T = 293 K; wavelength (Mo-K_a) = 0.71073 Å; $\theta(\max) = 27.5^{\circ}$; ^b R1 = $\Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; wR₂=[$\Sigma w(F_o^2 - F_c^2)_2 / \Sigma w F_o^4$]^{1/2}

The crystal structure of [Et₃SbCl(OTf)] was of low quality, however, it does confirm the geometry, and further suggests that the reaction of SnCl₄, SbEt₃ and TMSOTf results in redox chemistry.

Crystal Data. $C_7H_{15}ClF_3O_3SSb$, $M_r = 393.46$, monoclinic, $P2_1/c$ (No. 14), a = 29.6795(9) Å, b = 8.4762(3) Å, c = 21.7447(10) Å, b = 91.258(3) °, a = g = 90°, V = 5469.0(4) Å^3, T = 100(2) K, Z = 4, μ (Mo-K_a) /mm⁻¹ = 2.391, 77854 reflections measured, 15757 unique ($R_{int} = 0.163$) which were used in all calculations. The final wR_2 was 0.408 (all data) and R_1 was 0.208 (I > 2(I)).

NMR data for R₃SbX₂

The oil resulting from the addition of SnCl₄ to ^{*i*}Pr₃Sb matched the spectroscopic and IR data of ^{*i*}Pr₃SbCl₂, reported by Breunig and Kanig.¹

In order to prove the formation of Et_3SbX_2 (X = Cl or Br) from the addition of SbEt₃ to SnX₄, Et_3SbX_2 was made directly from the addition of an ethereal solution of two equivalents of SbEt₃ to an ethereal solution of three equivalents of SbX₃ at 0 °C. After warming to room temperature, the product was extracted in either CD₂Cl₂ or CDCl₃ for the purposes of NMR spectroscopy.

<u>*Et*</u>₃<u>SbCl</u>₂ ¹H NMR (CDCl₃, 295K): δ = 1.63 (t, [9H], ${}^{3}J_{H-H}$ = 7.8 Hz, CH₃), 2.72 (q, [6H], ${}^{3}J_{H-H}$ = 7.8 Hz, CH₂). ¹H NMR (CD₂Cl₂, 295K): δ = 1.58 (t, [9H], ${}^{3}J_{H-H}$ = 7.8 Hz, CH₃), 2.67 (q, [6H], ${}^{3}J_{H-H}$ = 7.8 Hz, CH₂). <u>*Et*₃SbBr</u>₂ ¹H NMR (CDCl₃, 295K): $\delta = 1.64$ (t, [9H], ³J_{H-H} = 7.8 Hz, CH₃), 2.93 (q, [6H], ³J_{H-H} = 7.8 Hz, CH₂).

Computational details

Calculations were performed using Gaussian 09W, Revision C.01,39 running on an Intel Core i5-2500 (quad, 3.3 GHz), equipped with 4 GB RAM; results were visualized using GaussView 5.0. Geometry optimisation and frequency calculations were performed on the isolated molecules, and using the B3LYP hybrid density functional, using a basis set with a Stuttgart-Dresden effective core potential on Sn and As atoms, and an all-electron double- ζ basis set on all electrons in H, C, O, F, P, Al, S, and Cl atoms. Minima were characterized by frequency calculations at the same level of theory. NBO calculations were performed at the same level of theory.

In addition, the structures of two uncoordinated ligands (AsEt₃ and PEt₃) have been calculated. The optimized structures of PEt₃ and AsEt₃ were calculated on the basis of experimental data for PMe₃, and AsMe₃, available from X-ray diffraction² or electron diffraction³ respectively, and compare well (Table S3 in the Supporting Information).

While some DFT studies of $[SnCl_4(PMe_3)_2]$ and $[SnCl_3(PMe_3)_2]^+$ have been previously reported,³ this was using a different basis set, and therefore new DFT studies were carried out for the purposes of this study. When compared, the geometry data for these complexes in this report, compare well to the geometries reported by MacDonald *et al.*.⁴

The supplemental file tin(IV) halides complexes.xyz contains the computed Cartesian coordinates of all complexes. The file may be opened as a text file to read the coordinates, or opened directly by a molecular modelling program such as Mercury (version 3.3 or later, http://www.ccdc.cam.ac.uk/pages/Home.aspx) for visualization and analysis.

[SnCl ₄ (AsEt ₃) ₂]	X-ray	DFT
Sn-Cl	2.4544(4)	2.54275
	2.4544(4)	2.54843
	2.4498(4)	2.54275
	2.4498(4)	2.54842
Sn-As	2.65962(16)	2.75346
	2.65964(16)	2.75346
As-C (av)	1.94	1.98
As-Sn-As	180.0	179.999
Cl-Sn-Cl	180.0	180.0
	90.367(15)	90.295
	89.633(15)	89.705
	89.633(15)	90.295
	90.367(15)	89.705
	180.0	179.999
Cl-Sn-As	90.354(10)	88.078
	89.646(10)	88.128
	90.354(10)	91.872
	89.647(10)	91.921
	90.991(10)	91.922
	89.010(10)	91.872
	90.991(10)	88.128
	89.008(10)	88.079
C-As-C (av)	105.89	105.85

 Table S2 Bond lengths and angles for optimised structures:

[SnCl ₃ (AsEt ₃) ₂ (OTf)]	X-ray	DFT
Sn-Cl	2.4168(8)	2.532
	2.4480(7)	2.527
	2.4533(7)	2.528
Sn-O _{OTf}	2.259(2)	2.189
Sn-As	2.6530(4)	2.740
	2.6451(4)	2.738
As-C (av)	1.941	1.979
As-Sn-As	172.239(12)	177.913
Cl-Sn-Cl(trans)	173.76(3)	171.519
Cl2-As-O1	178.65(6)	176.576
Cl-Sn-As	93.32(2)	89.241
	94.44(2)	91.947
	89.64(2)	89.138
	90.182(19)	91.086
	88.319(19)	90.085
	91.05(2)	90.238
C-As-C (av)	106.01	106.20

DFT

Sn-Cl	2.476
	2.495
	2.489
Sn-As	2.741
	2.737
As-C (av)	1.982
As-Sn-As	176.158
Cl-Sn-Cl	120.200
	116.631
	123.169
Cl-Sn-As	92.472
	87.502
	90.303
	90.107
	91.330
	88.487
C-As-C (av)	107.33

[SnCl ₄ (PMe ₃) ₂]	X-ray	DFT
Sn-Cl	2.4565(7)	2.531
	2.4762(6)	2.532
		2.531
		2.533
Sn-P	2.5654(7)	2.689
		2.689
P-C (av)	1.80	1.870
P-Sn-P	180.000(17)	179.707
Cl-Sn-Cl	180.0	89.995
	89.47(2)	179.975
	90.53(2)	89.939
		90.002
		179.930
		90.064
Cl-Sn-P	92.00(2)	92.881
	88.00(2)	90.181
	87.22(2)	87.096
	92.78(2)	89.844
		87.161
		89.529
		92.863
		90.446
C-P-C (av)	107.46	106.61

[SnCl ₃ (PMe ₃) ₂ (OTf)]	X-ray	DFT
Sn-Cl	2.4457(9)	2.530
	2.4558(9)	2.520
	2.4085(10)	2.528

Sn-O _{otf}	2.266(3)	2.181
Sn-P	2.5496(9)	2.691
	2.5506(9)	2.694
P-C (av)	1.797	1.891
P-Sn-P	164.16(3)	176.075
Cl-Sn-Cl(trans)	174.66(3)	171.769
	92.67(3)	95.225
	92.68(4)	92.998
Cl2-Sn-O1	178.03(7)	176.836
Cl-Sn-P	92.14(3)	87.714
	91.66(3)	91.618
	87.16(3)	91.687
	87.62(3)	88.362
	97.28(3)	88.671
	97.89(3)	92.207
C-P-C (av)	107.84	106.90

[SnCl ₃ (PMe ₃) ₂] ⁺	DFT
Sn-Cl	2.463
	2.461
	2.462
Sn-P	2.665
	2.665
P-C (av)	1.868
P-Sn-P	179.619
CI-Sn-Cl	120.117
	119.758
	120.125
CI-Sn-P	89.805
	90.105
	90.093
	89.814
	90.099
	90.084
C-P-C (av)	108.350

[SnCl ₄ (PEt ₃) ₂]	X-ray	DFT
Sn-Cl	2.445(5)	2.541
	2.465(5)	2.547
		2.541
		2.547
Sn-P	2.615(5)	2.699
		2.699
P-C (av)	1.81	1.891
P-Sn-P	180	180.000
Cl-Sn-Cl	89.90(18)	89.633

	90.10(18)	90.367
		89.633
		90.367
		180.000
		180.000
Cl-Sn-P	91.18(18)	88.032
	88.82(18)	92.062
	91.29(15)	91.968
	88.71(15)	87.938
		91.968
		87.938
		88.032
		92.062
C-P-C (av)	107.133	106.7810

[SnCl ₃ (PEt ₃) ₂ (OTf)]	DFT
Sn-Cl	2.530
	2.520
	2.528
Sn-O _{OTf}	2.181
Sn-P	2.691
	2.694
P-C (av)	1.891
P-Sn-P	176.075
Cl-Sn-Cl	171.769
	92.998
	95.225
Cl2-Sn-O1	176.836
Cl-Sn-P	91.618
	91.687
	87.714
	88.671
	92.207
	88.362
C-P-C (av)	106.90

Table S3 Bond lengths and angles for optimised free ligands

PR ₃	Structural data	DFT – PEt ₃	DFT – PMe ₃
	PEt ₃ *		
P-C	1.840	1.91622	1.90404
	1.843	1.92055	1.90385
	1.841	1.91479	1.90390
C-P-C	100.2	101.400	98.788
	99.39	100.299	98.765

	98.81	99.380	98.800			
*Structural data from ref ²						

*Structural data from ref²

	Structural data AsMe ₃	DFT AsMe ₃	DFT of AsEt ₃
As-C (Å)	$1.98 \pm 0.02^{*}$	2.01427	2.01233
		2.01998	2.01427
		2.01233	2.01998
C-As-C (°)	$96 \pm 5^*$	96.965	97.615
		96.934	98.596
		96.971	99.281

*Structural data from ref³

Table S4 Average E-C bond distances and C-E-C angles $(to \sim 3dp)$

	DFT		X-ray	
	E-C	С-Е-С	E-C	С-Е-С
PMe ₃	1.904	98.784	1.841 ²	99.467 ²
PEt ₃	1.917	100.360	-	-
AsEt ₃	2.016	98.497	-	-
[SnCl ₄ (AsEt ₃) ₂]	1.981	105.847	1.940	105.897
[SnCl ₃ (AsEt ₃) ₂ (OTf)]	1.979	106.205	1.941	106.008
[SnCl ₃ (AsEt ₃) ₂] ⁺	1.982	107.330	-	-
[SnCl ₄ (PMe ₃) ₂]	1.870	106.613	1.8004	107.4634
[SnCl ₃ (PMe ₃) ₂ (OTf)]	1.891	106.906	1.797	107.837

[SnCl ₃ (PMe ₃) ₂] ⁺	1.868	108.350	(1.790)*4	(109.073)*4
[SnCl ₄ (PEt ₃) ₂]	1.891	106.781	1.7905	107.110 ⁵
[SnCl ₃ (PEt ₃) ₂ (OTf)]	1.891	106.906	-	-

*values from crystal structure of [SnCl₃(PMe₃)₂][AlCl₄]⁴ Table S5 NBO data for optimised coordination complexes.

Table of averaged E-C bonds. $E = As$	/ P
	1

	Contribution (%)		Breakdown of E contributions (%)		Breakdown of C contributions (%)	
	Е	С	S	p	S	p
Me ₃ P	39.46	60.54	15.08	84.92	24.13	75.87
Et ₃ P	39.85	60.15	15.57	84.43	22.65	77.35
Et ₃ As	35.72	64.28	12.20	87.80	21.65	78.35
[SnCl ₄ (AsEt ₃) ₂]	40.70	59.30	25.29	74.71	20.48	79.52
[SnCl ₃ (AsEt ₃) ₂ (OTf)]	41.24	58.76	25.62	74.38	20.17	79.83
$[SnCl_3(AsEt_3)_2]^+$	42.50	57.50	26.76	73.24	19.61	80.39
[SnCl ₄ (PMe) ₂]	44.42	55.58	25.33	74.67	23.03	76.97
[SnCl ₃ (PMe ₃) ₂ (OTf)]	44.83	55.17	25.53	74.47	22.85	77.15
$[SnCl_3(PMe_3)_2]^+$	46.04	53.96	26.72	73.28	22.46	77.54
[SnCl ₄ (PEt ₃) ₂]	44.97	55.03	25.76	74.24	21.05	78.95
[SnCl ₃ (PEt ₃) ₂ (OTf)]	45.23	54.77	25.89	74.11	20.93	79.07

 $(\sim +5\%$ contribution from As/P, for each complex compared to the free ligands. Significant amount of s-character from E in complexes compared to free ligands.)

Table of averaged E-Sn bonds. $E =$	= As/P
-------------------------------------	--------

	Contribution (%)		Breakdown of Sb/As/P contributions (%)		Breakdown of Sn contributions (%)	
	P/As	М	S	р	S	р
[SnCl ₄ (AsEt ₃) ₂]	70.77	29.23	24.21	75.79	35.56	64.44
[SnCl ₃ (AsEt ₃) ₂ (OTf)]	77.14	22.86	23.34	76.66	47.20	52.80
$[SnCl_3(AsEt_3)_2]^+$	80.94	19.06	22.21	77.79	49.68	50.32
$[SnCl_4(PMe_3)_2]$	76.24	23.76	24.25	75.75	35.37	64.63
[SnCl ₃ (PMe ₃) ₂ (OTf)]	81.44	18.56	23.30	76.70	45.88	54.12
$[SnCl_3(PMe_3)_2]^+$	79.80	20.20	19.96	80.04	50.00	50.00
$[SnCl_4(PEt_3)_2]$	75.11	24.89	22.87	77.13	35.72	64.28
[SnCl ₃ (PEt ₃) ₂ (OTf)]	80.98	19.02	22.14	77.86	47.28	52.72

	НОМО	LUMO
[SnCl ₄ (AsEt ₃) ₂]		
[SnCl ₃ (AsEt ₃) ₂ (OTf)]		
[SnCl ₃ (AsEt ₃) ₂] ⁺		
[SnCl ₄ (PMe ₃) ₂]		

Table S6 Frontier Molecular Orbitals for tin complexes

[SnCl ₃ (PMe ₃) ₂ (OTf)]	
[SnCl₃(PMe₃)₂]⁺	
[SnCl ₄ (PEt ₃) ₂]	
[SnCl ₃ (PEt ₃) ₂ (OTf)]	

Table S7 Relative Orbital Energies

	номо	LUMO	Difference
[SnCl ₄ (AsEt ₃) ₂]	-6.92	-2.73	4.19
[SnCl ₃ (AsEt ₃) ₂ (OTf)]	-7.41	-3.11	4.30
[SnCl ₃ (AsEt ₃) ₂] ⁺	-10.60	-6.53	4.07
[SnCl ₄ (PMe ₃) ₂]	-6.99	-2.69	4.30
[SnCl ₃ (PMe ₃) ₂ (OTf)]	-7.61	-3.16	4.45
$[SnCl_3(PMe_3)_2]^+$	-11.27	-6.78	4.49
[SnCl ₄ (PEt ₃) ₂]	-6.93	-2.63	4.30
[SnCl ₃ (PEt ₃) ₂ (OTf)]	-7.54	-3.10	4.44

Orbital energies are given in eV and are for comparative purposes only

References

- 1. H. J. Breunig and W. Kanig, Phosphorus Sulfur, 1982, 12 (2), 149
- 2. J. Bruckmann and C. Krüger, Acta Cryst., 1995, C51, 1155-1158.
- 3. H. D. Springall and L. O. Brockway, J. Am. Chem. Soc., 1938, 60 (5), 996–1000.
- 4. E. MacDonald, L. Doyle, S. S. Chitnis, U. Werner-Zwanziger, N. Burford and A. Decken, *Chem. Commun.*, 2012, **48**, 7922.
- 5. G. G. Mather, G. M. McLaughlin and A. Pidcock, J. Chem. Soc., Dalton Trans., 1973, 1823.