## Supporting Information

## Thioether-Based Recyclable Metal Organic Frameworks for Selective and Efficient Removal of Hg<sup>2+</sup> from Water

Kan Li<sup>a</sup>, Jing-jing Li<sup>a</sup>, Ni Zhao<sup>a</sup>, Ting-ting Xie<sup>a</sup>, Bin Di<sup>\*a,b</sup>, Li-li Xu<sup>\*a,b</sup>

<sup>a</sup> Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.

<sup>b</sup> Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.

\*Corresponding authors: dibin@cpu.edu.cn (B.D.); 1620174420@cpu.edu.cn (L.L.X.)

## **Table of Contents**

| No. | Contents                                                                                                                     | Pages |
|-----|------------------------------------------------------------------------------------------------------------------------------|-------|
| 1   | Fig. S1 <sup>1</sup> H NMR spectra of 1,3,5-tris(bromomethyl)-2,4,6-trimethoxybenzene                                        | 3     |
| 2   | <b>Fig. S2</b> <sup>1</sup> H NMR spectra of 1,3,5-tris((pyridin-4-ylthio)methyl)benzene ( <i>L</i> <sub>1</sub> )           | 4     |
| 3   | Fig. S3 <sup>1</sup> H NMR spectra of 2,4,6-trimethoxy-1,3,5-tris((pyridin-4-ylthio)methyl)benzene ( <i>L</i> <sub>2</sub> ) | 5     |
| 4   | Fig. S4 HRMS of 2,4,6-trimethoxy-1,3,5-tris((pyridin-4-ylthio)methyl)benzene (L <sub>2</sub> )                               | 6     |
| 5   | Fig. S5 Thermogravimetric curves of MOFs 1-3                                                                                 | 7     |
| 6   | Fig. S6 The amount of metal ions released by MOFs 1-3 in different solutions                                                 | 8     |
| 7   | Table S1 Selected bond distances (Å) and angles (°) for complexes 1-3                                                        | 9     |



Fig. S1 <sup>1</sup>H NMR spectra of 1,3,5-tris(bromomethyl)-2,4,6-trimethoxybenzene





Fig. S2  $^{1}$ H NMR spectra of 1,3,5-tris((pyridin-4-ylthio)methyl)benzene (L<sub>1</sub>)









Fig. S5 Thermogravimetric curves of MOFs 1-3



Fig. S6 The amount of metal ions released by MOFs 1-3 in different solutions

| Table S1. Selected bond distances | (Å) and angles ( | (°) for complexes 1-3 |
|-----------------------------------|------------------|-----------------------|

| 1              |            |              |            |              |            |
|----------------|------------|--------------|------------|--------------|------------|
| Zn1–Cl1        | 2.2440(11) | Zn1–Cl2      | 2.2114(12) |              |            |
| Zn1–N1         | 2.037(3)   | Zn1–N3       | 2.029(3)   |              |            |
| Cl2–Zn1–Cl1    | 121.02(5)  | N1–Zn1–Cl1   | 105.02(9)  | N1–Zn1–Cl2   | 105.47(9)  |
| N3–Zn1–Cl1     | 108.31(10) | N3-Zn1-Cl2   | 108.44(10) | N3–Zn1–N1    | 107.90(13) |
| 2              |            |              |            |              |            |
| I1–Cu2         | 2.656(2)   | I1–Cu1       | 2.624(3)   | l1–O2        | 2.09(2)    |
| I1–O3          | 2.37(2)    | I2–Cu2       | 2.577(2)   | l2–Cu1       | 3.065(3)   |
| 12–01          | 2.34(2)    | I2–Cu3       | 2.2325(10) | I3–Cu2       | 2.960(3)   |
| I3–Cu1         | 2.571(2)   | I3–Cu3       | 2.3154(10) | I3–O4        | 2.00(2)    |
| Cu2–Cu1        | 2.408(3)   | Cu2–N3       | 1.975(12)  | Cu1–N1       | 1.954(13)  |
| Cu1–Cu3        | 2.548(2)   |              |            |              |            |
| Cu1–I1–Cu2     | 54.26(7)   | O2-I1-Cu2    | 77.4(6)    | O2–I1–Cu1    | 106.6(6)   |
| O2–I1–O3       | 177.3(8)   | O3–I1–Cu2    | 101.2(5)   | O3–I1–Cu1    | 74.2(5)    |
| Cu2–I2–Cu1     | 49.61(6)   | O1–I2–Cu1    | 147.7(6)   | Cu3–I2–Cu1   | 54.82(4)   |
| Cu3-l2-O1      | 139.2(5)   | Cu1–I3–Cu2   | 51.02(6)   | Cu3–I3–Cu1   | 62.61(6)   |
| O4–I3–Cu2      | 156.7(7)   | O4–I3–Cu1    | 125.2(6)   | l1–Cu2–l3    | 99.62(7)   |
| I2-Cu2-I1      | 109.99(8)  | I2–Cu2–I3    | 99.68(8)   | Cu1–Cu2–I1   | 62.19(8)   |
| Cu1–Cu2–I2     | 75.81(9)   | Cu1–Cu2–I3   | 56.11(7)   | N3–Cu2–I1    | 116.7(4)   |
| N3–Cu2–I2      | 119.3(4)   | N3–Cu2–I3    | 108.0(4)   | N3–Cu2–Cu1   | 161.4(4)   |
| I1–Cu1–I2      | 97.48(7)   | I3–Cu1–I1    | 111.52(8)  | l3–Cu1–l2    | 97.14(8)   |
| Cu2–Cu1–I1     | 63.55(8)   | Cu2–Cu1–l2   | 54.58(7)   | Cu2–Cu1–I3   | 72.87(8)   |
| N1–Cu1–I1      | 119.5(4)   | N1–Cu1–l2    | 107.6(4)   | N1–Cu1–I3    | 118.3(4)   |
| N1–Cu1–Cu2     | 161.5(4)   | N1–Cu1–Cu3   | 137.4(4)   | Cu3–Cu1–I1   | 99.09(7)   |
| Cu3–Cu1–l2     | 45.73(5)   | Cu3–Cu1–l3   | 53.78(5)   |              |            |
| 3              |            |              |            |              |            |
| Br01–Cu03      | 2.541(5)   | Br02–Cu03    | 2.442(2)   | Cu03–N1      | 2.015(12)  |
| Cu03–N2        | 2.037(11)  | Cu03–N3      | 2.101(12)  | Cu03–Br      | 2.99(4)    |
| Br02-Cu03-Br01 | 120.81(13) | Br02–Cu03–Br | 114.4(5)   | N1–Cu03–Br01 | 95.6(4)    |
| N1-Cu03-Br02   | 90.4(3)    | N1-Cu03-N2   | 171.4(5)   | N1-Cu03-N3   | 83.2(5)    |
| N1–Cu03–Br     | 92.0(5)    | N2-Cu03-Br01 | 91.8(4)    | N2-Cu03-Br02 | 89.5(3)    |
| N2-Cu03-N3     | 90.6(4)    | N2–Cu03–Br   | 95.9(5)    | N3–Cu03–Br01 | 105.7(4)   |
| N3-Cu03-Br02   | 133 4(3)   | N3-Cu03-Br   | 111 8(6)   |              | . /        |