Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supplementary information

for

Aerobic photolysis of MeCbl: structural and electronic properties of Cbl-O-O-CH₃ intermediate

Arghya Pratim Ghosh,¹ Piotr Lodowski,² Aida Bazarganpour,¹ Marzena Leks,² and Pawel M. Kozlowski^{1,*}

¹ Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States

² Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland

- **Table S1.** Selected structural parameters for singlet and triplet states of $\{Im-[Co^{III}(corrin)]-O-O-CH_3\}^+$ model complex.
- **Table S2.**The ten lowest vertical singlet and five lowest vertical triplet electronic transitions
for Im-[Co^{III}(corrin)]-O₂Me⁺ model complex based on the TD-DFT/BP86/TZVPP
calculations.
- **Table S3.**The ten lowest vertical singlet and five lowest vertical triplet electronic transitions
for Im-[Co^{III}(corrin)]-O₂Me⁺ model complex based on the TD-
DFT/ ω B97x/TZVPP calculations.
- **Table S4.** The ten lowest, vertical singlet and triplet electronic transitions for Im-[Co^{III}(corrin)]-O₂Me⁺ model complex based on the TD-DFT/LB94/TZ2P calculations (geometry of complex was optimized at DFT/BP86/TZVPP level).
- **Figure S1.** Molecular geometry of {Im-[Co^{III}(corrin)]-O-O-CH₃}⁺ model complex.
- Figure S2. Optimized geometries of {[Co^{III}(corrin)]-O-O-CH₃}⁺ model complex at frozen Co-O distance equal to 2.30 Å for a) ground state S₀ (calculations with broken symmetry UHF wave function), b) lowest triplet state T₁, c) superimpose of geometries S₀ and T₁ (black S₀ geometry, blue T₁ geometry).
- **Figure S3.** Composition of two lowest occupied molecular orbitals H and H-1 (in %) of the {Im-[CoIII(corrin)]-O-O-CH3}⁺ complex at BP86/TZVPP level of theory.
- **Figure S4.** Key low-energy singlet (S1, S2, S3) and triplet (T1, T2) vertical excitations of {Im-[CoIII(corrin)]-O-O-CH3}+ model complex calculated using TD-DFT/LB94/TZ2P level of theory (ground state geometry of complex was optimized at DFT/BP86/TZVPP level).
- **Figure S5.** Bond dissociation curves for the {Im-[Co^{III}(corrin)]-O-O-CH₃}⁺ complex computed at BP86/TZVPP level of theory by systematically stretching Co-O and O-O bond. a) along Co-O bond b) along O-O bond.

	\mathbf{S}_{0}	\mathbf{S}_1	T_1				
		Bond Distances, Å					
Co-O	1.929	1.971	2.001				
Co-N _{Im}	2.033	1.901	2.529				
Co-N ₂₁	1.889	1.904	1.889				
Co-N ₂₂	1.945	1.952	1.939				
Co-N ₂₃	1.944	1.961	1.950				
Co-N ₂₄	1.885	1.907	1.886				
0-0	1.441	1.351	1.403				
O-C _{CH3}	1.426	1.426 1.451					
	Bond Angles, deg						
N _{Im} -Co-O	174.1	175.2	179.2				
Со-О-О	114.9	116.3	116.1				
O-O-C _{CH3}	108.1	109.3	108.1				
N ₂₁ -Co-N ₂₃	173.1	172.7	169.1				
N ₂₂ -Co-N ₂₄	172.3	172.6	173.4				
	Torsion Angles, deg						
N_{21} - N_{22} - N_{23} - N_{24}	-4.5	-3.1	-5.3				
N ₂₁ -N ₂₂ -N ₂₃ -Co	-1.3	-1.2	-6.2				
C ₁₀ -Co-O-O	-22.8	-44.8	4.1				
Co-O-O-C _{CH3}	-107.2	178.3	-178.6				

Table S1. Selected structural parameters for singlet and triplet states of $\{Im-[Co^{III}(corrin)]-O-O-CH_3\}^+$ model complex.

	E(eV) λ (nm) f % Character					Character	
	Singlet states						
S_1	1.89	655.9	0.0040	94	$125 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L}$	$p_O+d_{yz} \rightarrow \pi^*$
S_2	2.14	578.0	0.0017	91	$125 \rightarrow 127$	$\mathrm{H} \rightarrow \mathrm{L}{+1}$	$p_0 + d_{yz} \rightarrow \sigma^*(d_{z2})$
S_3	2.37	522.7	0.0291	81	$124 \rightarrow 126$	$\text{H-1} \rightarrow \text{L}$	$\pi + d_{yz} + p_O \rightarrow \pi^*$
				13	$122 \rightarrow 126$	$\text{H-3} \rightarrow \text{L}$	$p_O\!\!+ d_{xz}\!\!+\!\!\pi \to \pi^*$
S_4	2.47	501.8	0.0102	68	$124 \rightarrow 127$	$\text{H-1} \rightarrow \text{L+1}$	$\pi + d_{yz} + p_O \rightarrow \sigma^*(d_{z2})$
				12	$123 \rightarrow 127$	$\text{H-2} \rightarrow \text{L+1}$	$\pi + [d_{xz} + d_{yz}] + p_O \rightarrow \sigma^*(d_{z2})$
				10	$125 \rightarrow 128$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$p_O+d_{yz} \rightarrow d_{xy}-n$
S_5	2.53	489.6	0.0007	76	$125 \rightarrow 128$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$p_O+d_{yz} \rightarrow d_{xy}-n$
				12	$122 \rightarrow 127$	$\text{H-3} \rightarrow \text{L+1}$	$p_O^+ d_{xz}^+ \pi \rightarrow \sigma^*(d_{z2})$
S_6	2.62	473.5	0.0188	61	$123 \rightarrow 126$	$\text{H-2} \rightarrow \text{L}$	$\pi + [d_{xz} + d_{yz}] + p_O \rightarrow \pi^*$
S_7	2.65	467.4	0.0066	63	$123 \rightarrow 127$	$\text{H-2} \rightarrow \text{L+1}$	$\pi + [d_{xz} + d_{yz}] + p_O \rightarrow \sigma^*(d_{z2})$
				12	$125 \rightarrow 129$	$\mathrm{H} \rightarrow \mathrm{L+3}$	$p_O+d_{yz} \rightarrow \pi^*$
S_8	2.70	458.5	0.0107	49	$125 \rightarrow 129$	$\mathrm{H} \rightarrow \mathrm{L+3}$	$p_O+d_{yz} \rightarrow \pi^*$
				15	$121 \rightarrow 126$	$H-4 \rightarrow L$	$p_O+[d_{x2\text{-}y2}+d_{yz}]+\pi \to \pi^*$
S9	2.74	451.7	0.0105	52	$121 \rightarrow 126$	$H-4 \rightarrow L$	$p_O+[d_{x2\text{-}y2}+d_{yz}]+\pi \to \pi^*$
				23	$125 \rightarrow 129$	$\mathrm{H} \rightarrow \mathrm{L+3}$	$p_O+d_{yz} \rightarrow \pi^*$
S_{10}	2.79	444.9	0.0613	37	$122 \rightarrow 126$	$\text{H-3} \rightarrow \text{L}$	$p_O\!\!+ d_{xz}\!\!+\!\!\pi \to \pi^{\boldsymbol{*}}$
				32	$124 \rightarrow 128$	$\text{H-1} \rightarrow \text{L+2}$	π + d_{yz} + $p_O \rightarrow d_{xy}$ - n
					Tripl	et states	
T_1	1.45	857.1		49	$125 \rightarrow 127$	$\mathrm{H} \rightarrow \mathrm{L}{+1}$	$p_0+d_{yz} \rightarrow \sigma^*(d_{z2})$
T_2	1.70	727.9		47	$125 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L}$	$p_O+d_{yz} \rightarrow \pi^*$
T ₃	1.98	625.1		22	$124 \rightarrow 127$	$\text{H-1} \rightarrow \text{L+1}$	$\pi + d_{yz} + p_0 \rightarrow \sigma^*(d_{z2})$
				15	$125 \rightarrow 128$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$p_O+d_{yz} \rightarrow d_{xy}-n$
T ₄	2.00	621.2		25	$125 \rightarrow 128$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$p_O+d_{yz} \rightarrow d_{xy}-n$
				12	$124 \rightarrow 127$	$\text{H-1} \rightarrow \text{L+1}$	$\pi + d_{yz} + p_O \rightarrow \sigma^*(d_{z2})$
T5	2.03	611.4		46	$124 \rightarrow 126$	$\text{H-1} \rightarrow \text{L}$	$\pi + d_{yz} + p_O \rightarrow \pi^*$

Table S2. The ten lowest vertical singlet and five lowest vertical triplet electronic transitions for $Im-[Co^{III}(corrin)]-O_2Me^+$ model complex based on the TD-DFT/BP86/TZVPP calculations.

	E(eV)	λ(nm)	f	%	Character			
				Singlet states				
\mathbf{S}_1	2.32	533.3	0.0001	32	$124 \rightarrow 128$	$H-1 \rightarrow L+2$	$[p_{O}+d_{yz}]+\pi \rightarrow \sigma^{*}(d_{z2})$	
				17	$122 \rightarrow 128$	$\text{H-3} \rightarrow \text{L+2}$	$p_0 + d_{yz} \rightarrow \sigma^*(d_{z2})$	
S_2	2.62	473.1	0.0000	26	$119 \rightarrow 128$	$\text{H-6} \rightarrow \text{L+2}$	$d_{xz} + \pi_{Im} \rightarrow \sigma^*(d_{z2})$	
				17	$120 \rightarrow 128$	$\text{H-5} \rightarrow \text{L+2}$	$\pi + [p_O + d_{xz}] \rightarrow \sigma^*(d_{z2})$	
S_3	3.11	399.3	0.0116	37	$116 \rightarrow 129$	$\text{H-9} \rightarrow \text{L+3}$	d_{x2-y2} +corr $\rightarrow d_{xy}$ -n	
				22	$118 \rightarrow 129$	$\text{H-7} \rightarrow \text{L+3}$	$d_{x2-y2}+n \rightarrow d_{xy}-n$	
				10	$117 \rightarrow 129$	$\text{H-8} \rightarrow \text{L+3}$	$\operatorname{corr} + d_{x2-y2} + \pi \rightarrow d_{xy} - n$	
S_4	3.19	388.9	0.1484	79	$125 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L}$	$\pi \rightarrow \pi^*$	
S_5	3.41	364.1	0.0004	27	$124 \rightarrow 129$	$\text{H-1} \rightarrow \text{L+3}$	$[d_{yz}+p_O]+\pi \rightarrow d_{xy}-n$	
				13	$122 \rightarrow 129$	$\text{H-3} \rightarrow \text{L+3}$	$p_O + d_{yz} \rightarrow d_{xy} - n$	
S_6	3.69	335.6	0.0006	31	$119 \rightarrow 129$	$\text{H-6} \rightarrow \text{L+3}$	d_{xz} + π_{Im} \rightarrow d_{xy} - n	
				21	$120 \rightarrow 129$	$\text{H-5} \rightarrow \text{L+3}$	$\pi + [p_O + d_{xz}] \rightarrow d_{xy} - n$	
S_7	3.74	331.1	0.0011	40	$116 \rightarrow 128$	$\text{H-9} \rightarrow \text{L+2}$	$d_{x2-y2}+corr \rightarrow \sigma^*(d_{z2})$	
				21	$118 \rightarrow 128$	$\text{H-7} \rightarrow \text{L+2}$	$d_{x2-y2}+n \rightarrow \sigma^*(d_{z2})$	
				10	$117 \rightarrow 128$	$\text{H-8} \rightarrow \text{L+2}$	$\operatorname{corr} + d_{x2-y2} + \pi \rightarrow \sigma^*(d_{z2})$	
S_8	4.16	298.0	0.0440	75	$125 \rightarrow 128$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$\pi \rightarrow \sigma^*(d_{z2})$	
S_9	4.24	292.7	0.2061	40	$124 \rightarrow 126$	$\text{H-1} \rightarrow \text{L}$	$[d_{yz}+p_O]+\pi \rightarrow \pi^*$	
				28	$125 \rightarrow 129$	$H \rightarrow L+3$	$\pi \rightarrow d_{xy}$ -n	
				18	$125 \rightarrow 127$	$\mathrm{H} \rightarrow \mathrm{L}{+1}$	$\pi \rightarrow \pi^*$	
\mathbf{S}_{10}	4.31	288.0	0.0566	49	$125 \rightarrow 129$	$H \rightarrow L+3$	$\pi \rightarrow d_{xy}$ -n	
				18	$124 \rightarrow 126$	$H-1 \rightarrow L$	$[d_{yz}+p_O]+\pi \rightarrow \pi^*$	
		Triplet states						
T_1	1.46	849.3		16	$124 \rightarrow 128$	$\text{H-1} \rightarrow \text{L+2}$	$[p_O+d_{yz}]+\pi \to \sigma^*(d_{z2})$	
				8	$122 \rightarrow 128$	$\text{H-3} \rightarrow \text{L+2}$	$p_0 + d_{yz} \rightarrow \sigma^*(d_{z2})$	
T_2	1.80	687.0		13	$119 \rightarrow 128$	$\text{H-6} \rightarrow \text{L+2}$	$d_{xz} + \pi_{Im} \rightarrow \sigma^*(d_{z2})$	
				8	$120 \rightarrow 128$	$\text{H-5} \rightarrow \text{L+2}$	$\pi + [p_O + d_{xz}] \rightarrow \sigma^*(d_{z2})$	
T_3	2.04	608.7		10	$124 \rightarrow 129$	$\text{H-1} \rightarrow \text{L+3}$	$[p_O+d_{yz}]+\pi \rightarrow d_{xy}-n$	
T_4	2.23	556.1		17	$116 \rightarrow 128$	$\text{H-9} \rightarrow \text{L+2}$	$d_{x2-y2}+corr \rightarrow \sigma^*(d_{z2})$	
				8	$118 \rightarrow 128$	$\text{H-7} \rightarrow \text{L+2}$	$d_{x2-y2}+n \rightarrow \sigma^*(d_{z2})$	
T ₅	2.29	541.6		39	$125 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L}$	$\pi \rightarrow \pi^*$	

Table S3. The ten lowest vertical singlet and five lowest vertical triplet electronic transitions for $Im-[Co^{III}(corrin)]-O_2Me^+$ model complex based on the TD-DFT/ ω B97x/TZVPP calculations.

	E(eV)	λ(nm)	f	%	Character				
			Singlet states						
S_1	1.96	632.9	0.0005	75	$125 \rightarrow 126$	$H \rightarrow L$	$p_0+d_{yz} \rightarrow \sigma^*(d_{z2})$		
				20	$124 \rightarrow 126$	$\text{H-1} \rightarrow \text{L}$	$\pi \rightarrow \sigma^*(d_{z2})$		
S_2	2.01	618.2	0.0093	73	$124 \rightarrow 126$	$\text{H-1} \rightarrow \text{L}$	$\pi \rightarrow \sigma^*(d_{z2})$		
				16	$125 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L}$	$p_0 + d_{yz} \rightarrow \sigma^*(d_{z2})$		
S_3	2.10	590.1	0.0156	85	$125 \rightarrow 127$	$\mathrm{H} \rightarrow \mathrm{L}{+1}$	$p_O + d_{yz} \rightarrow \pi^*$		
S_4	2.35	528.1	0.0162	80	$123 \rightarrow 126$	$H-2 \rightarrow L$	$\pi + [d_{xz} + p_O] \rightarrow \sigma^*(d_{z2})$		
S_5	2.36	524.3	0.1264	82	$124 \rightarrow 127$	$\text{H-1} \rightarrow \text{L+1}$	$\pi \rightarrow \pi^*$		
S_6	2.51	493.2	0.0018	71	$125 \rightarrow 128$	$\mathrm{H} \rightarrow \mathrm{L+2}$	$p_O + d_{yz} \rightarrow d_{xy} - n$		
				22	$122 \rightarrow 126$	$H-3 \rightarrow L$	$[d_{xz}+p_O]+\pi \rightarrow \sigma^*(d_{z2})$		
S_7	2.52	491.3	0.0038	93	$124 \rightarrow 128$	$\text{H-1} \rightarrow \text{L+2}$	$\pi \rightarrow d_{xy}$ -n		
S_8	2.59	478.9	0.0690	78	$123 \rightarrow 127$	$\text{H-2} \rightarrow \text{L+1}$	$\pi + [d_{xz} + p_O] \rightarrow \pi^*$		
S ₉	2.69	461.2	0.0057	50	$122 \rightarrow 126$	$H-3 \rightarrow L$	$[d_{xz}+p_O]+\pi \rightarrow \sigma^*(d_{z2})$		
				16	$122 \rightarrow 127$	$\text{H-3} \rightarrow \text{L+1}$	$[d_{xz}+p_O]+\pi \to \pi^*$		
S_{10}	2.73	454.0	0.0387	59	$122 \rightarrow 127$	$\text{H-3} \rightarrow \text{L+1}$	$[d_{xz}+p_O]+\pi \to \pi^*$		
				13	$122 \rightarrow 126$	$H-3 \rightarrow L$	$[d_{xz}+p_O]+\pi \rightarrow \sigma^*(d_{z2})$		
	Triplet states								
T_1	1.49	830.5		98	$125 \rightarrow 126$	$\mathrm{H} \rightarrow \mathrm{L}$	$p_0 + d_{yz} \rightarrow \sigma^*(d_{z2})$		
T_2	1.82	683.1		77	$124 \rightarrow 126$	$\text{H-1} \rightarrow \text{L}$	$\pi \rightarrow \sigma^*(d_{z2})$		
				14	$125 \rightarrow 127$	$\mathrm{H} \rightarrow \mathrm{L}{+1}$	$p_O + d_{yz} \rightarrow \pi^*$		
T_3	1.87	664.0		81	$125 \rightarrow 127$	$\mathrm{H} \rightarrow \mathrm{L}{+1}$	$p_O + d_{yz} \rightarrow \pi^*$		
				15	$124 \rightarrow 126$	$\text{H-1} \rightarrow \text{L}$	$\pi \rightarrow \sigma^*(d_{z2})$		
T_4	1.99	622.7		96	$124 \rightarrow 127$	$\text{H-1} \rightarrow \text{L+1}$	$\pi \rightarrow \pi^*$		
T ₅	2.01	618.3		82	$123 \rightarrow 126$	$H-2 \rightarrow L$	$\pi + [d_{xz} + p_0] \rightarrow \sigma^*(d_{z2})$		

Table S4. The ten lowest, vertical singlet and triplet electronic transitions for Im-[Co^{III}(corrin)]- O_2Me^+ model complex based on the TD-DFT/LB94/TZ2P calculations (geometry of complex was optimized at DFT/BP86/TZVPP level).

Figure S1. Molecular geometry of {Im-[Co^{III}(corrin)]-O-O-CH₃}⁺ model complex.

Figure S2. Optimized geometries of $\{[Co^{III}(corrin)]-O-O-CH_3\}^+$ model complex at frozen Co-O distance equal to 2.30 Å for a) ground state S_0 (calculations with broken symmetry UHF wave function), b) lowest triplet state T_1 , c) superimpose of geometries S_0 and T_1 (black - S_0 geometry, blue - T_1 geometry).

Figure S3. Composition of two lowest occupied molecular orbitals H and H-1 (in %) of the {Im- $[Co^{III}(corrin)]-O-O-CH_3$ }⁺ complex at BP86/TZVPP level of theory.

Figure S4. Key low-energy singlet (S1, S2, S3) and triplet (T1, T2) vertical excitations of {Im-[CoIII(corrin)]-O-O-CH3}+ model complex calculated using TD-DFT/LB94/TZ2P level of theory (ground state geometry of complex was optimized at DFT/BP86/TZVPP level).

Figure S5. Bond dissociation curves for the $\{Im-[Co^{III}(corrin)]-O-O-CH_3\}^+$ complex computed at BP86/TZVPP level of theory by systematically stretching Co-O and O-O bond. a) along Co-O bond b) along O-O bond