Electronic Supporting Information For

A diamidinatogermylene as a Z-type ligand in a nickel(0) complex

Zhongtao Feng,^{a‡} Yixiao Jiang,^{a‡} Huapeng Ruan,^a Yue Zhao,^a Gengwen Tan,^{a*} Li Zhang, ^{ab*} Xinping Wang^{a*}

^a State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China

^b Center of Materials Science and Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

[‡] These two authors contributed equally to the work.

Content

Experimental Section	S2
Synthesis of N-(2-(diphenylphosphino)phenyl)-N'-mesitylpivalamidine	S2
Synthesis of chlorogermylene 1	
Preparation of chlorogermylene nickel(0) complex 2	
Preparation of the germylene nickel(0) complex 3	S4
Selected Figures	S5
NMR spectra for the new compounds	S6
Table S1. Crystal data and structure refinement for compounds 1-3	S11
Table S2 The calculated main Ni and Ge atom orbital contributions of HOMOs	S12
Theoretical Calculations	S13
References	S24

Experimental Section

General information

All reactions were performed under a dry nitrogen atmosphere by using standard Schlenk-line and in a glovebox. Solvents were dried by the proper drying agents; NaK/benzophenone (diethyl ether, THF, toluene, hexane), CaH₂ (triethylamine, dichloromethane) and degassed before use. All NMR spectra were recorded on Bruker AVQ-400 or DRX 500 spectrometers referenced to residual solvent signals as internal standards for ¹H and ¹³C{¹H} NMR or with an external standard (H₃PO₄ for ³¹P{1H} NMR).. Element analyses were performed on an Elementar Vario EL III instrument at Shanghai Institute of Organic Chemistry, the Chinese Academy of Science. For the single crystal X-ray structure analyses the crystals were each mounted on a glass capillary in perfluorinated oil and measured in a cold N₂ flow. The data were collected on Bruker D8 CMOS detectors at 153 K. The structures were solved by direct methods and all refined on F^2 with the SHELX-2014/7 software package. GeCl₂(dioxane),^{S1} 2-(diphenylphosphino)benzenamine^{S3} chloride.^{S2} *N*-mesitylpivalimidoyl and were synthesized according to the reported procedures.

Synthesis of N-(2-(diphenylphosphino)phenyl)-N'-mesitylpivalamidine

Triethylamine (2.08 mL, 15.0 mmol) was added dropwise at room temperature to a solution of *N*-mesitylpivalimidoyl chloride (2.38 g, 10 mmol) and 2-(diphenylphosphino)benzenamine (2.77 g, 10 mmol) in 50 mL toluene. The mixture was heated to reflux and stirred overnight, and then the mixture was filtered to remove triethylamine hydrochloride in air. The filtrate was dried in vacuum, and the bright yellow solid was isolated after recrystallization from *n*-hexane. Yield: 98%. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.31 (m, 4H), 7.26 (d, *J* = 5.0 Hz, 8H), 6.89 (d, *J* = 12.8 Hz, 2H), 6.54 (d, *J* = 20.5 Hz, 2H), 6.24 (s, 1H), 2.25 (s, 3H), 2.21–2.02 (m, 6H), 1.19 (s, 9H). ³¹P NMR (162 MHz, CDCl₃, ppm): δ -11.9, -17.8.

Synthesis of chlorogermylene 1

n-BuLi (2.5 M, 1.26 mL, 3.15 mmol) was added dropwise to a cooled solution of N-(2-(diphenylphosphino)phenyl)-N-mesitylpivalamidine (1.436 g, 3.0 mmol) in 30 mL THF at -78 °C, then the mixture was allowed to slowly warm up to room temperature. The mixture was stirred for 3 h, and a solution of GeCl₂(dioxane) (0.709 g, 3 mmol) in THF (20 mL) was added to the mixture at -78 °C. The mixture was left to warm up to room temperature and stirred for 12 h. After that, all the volatile was evaporated, and the remaining bright yellow solid was extracted with hot toluene and filtered through celite. The filtrate was concentrated to ca. 10 mL and left at -20 °C to afford bright yellow crystals of 1. Yield: 84%. Anal. Calcd (%) for C₃₂H₃₄ClGeN₂P: C, 65.62; H, 5.85; N, 4.78. Found: C, 65.91; H, 6.03; N, 4.87. ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.54 (d, J = 7.0 Hz, 1H), 7.33 (d, J = 44.7 Hz, 4H, C₆H₄), 7.07-6.99 (d, J = 26.5 Hz, 8H, $o - C_6H_5$ $m - C_6H_5$), 6.83 (s, 1H), 6.69 (s, 1H, $m - C_6H_2$), 6.64 (s, 1H, m-C₆H₂), 2.58 (s, 3H, p-PhCH₃), 2.38 (s, 3H, o-PhCH₃), 2.08 (s, 3H, o-PhCH₃), 0.99 (s, 9H, C(CH₃)₃). ³¹P NMR (162 MHz, C₆D₆, ppm): δ -15.64. ¹³C NMR (101 MHz, C₆D₆, ppm): δ 180.46 (N=C-N), 146.36 (C₆H₄), 139.04 (p-C₆H₂), 134.52 (m-C₆H₂), 134.37 (p-C₆H₅), 133.65 (*m*-C₆H₂), 133.53 (*m*-C₆H₅), 132.79 (*o*-C₆H₂), 129.53-128.81 (C₆H₄), 129.18 (*o*-C₆H₅), 128.73 (o-C₆H₂), 127.93 (C_6 H₄), 127.69 (C_6 H₅), 127.45 (C_6 H₅), 41.46(C(CH₃)₃), 28.19 (C(CH₃)₃), 20.52 (Mes-CH₃), 19.66(Mes-CH₃).

Preparation of chlorogermylene nickel(0) complex 2

Toluene (20 mL) was added into a flask containing Ni(COD)₂ (55.0 mg, 0.20 mmol) and compound **1** (0.246 g, 0.42 mmol) at 0 °C. The mixture was stirring overnight at 0 °C and an orange suspension was formed. After cooling at -40 °C overnight, the suspension was filtered, and the obtained orange solid of **2** was obtained by drying in vacuum for 2 h. Yield: 69%. Anal. Calcd (%) for C₆₄H₆₈Cl₂Ge₂N₄NiP₂•2C₇H₈: C, 66.24; H, 5.99; N, 3.96. Found: C, 65.71; H, 5.98; N, 4.18. ¹H NMR (500 MHz, CD₂Cl₂, ppm): δ 8.01 (br, 4 H, Ar-*H*), 6.80-7.37 (m, 28H, Ar-*H*), 2.30 (s, 6H, Mes-C*H*₃), 2.26 (s, 6H, Mes-C*H*₃), 2.21 (s, 6H, Mes-C*H*₃), 0.47 (s, 18H, C(CH₃)₃). ³¹P NMR (202 MHz, CD₂Cl₂, ppm): δ 24.7. ¹³C NMR (126 MHz, CD₂Cl₂, ppm): δ 176.9 (NCN), 143.6, 138.0, 136.2, 136.1, 136.0, 134.9, 134.8, 134.6,

134.5, 134.0, 133.8, 131.7, 129.6, 129.1, 129.0, 128.7, 128.4, 128.2, 128.1, 127.8, 127.7, 127.5, 127.4, 127.3, 124.3 (Ph-*C*), 39.4 (*C*(CH₃)₃), 28.1 (*C*(*C*H₃)₃), 21.2, 20.6, 20.4 (Mes-*C*H₃).

Preparation of the germylene nickel(0) complex 3

THF (20 mL) was added into a flask containing K (25.0 mg, 0.63 mmol) and **2** (0.369 g, 0.3 mmol) at room temperature. The mixture was stirred at room temperature for 3 days. Then all the volatiles were removed in vacuum. The residue was extracted with diethyl ether (20 mL) and filtered. The filtrate was concentrated to ca. 10 mL and left at room temperature for 24 h to afford the dark brown crystals of compound **3**. Yield: 20%. Anal.Calcd (%) for $C_{64}H_{68}GeN_4NiP_2$: C, 70.75; H, 6.31; N, 5.16. Found: C, 70.09; H, 6.63; N, 4.97. Due to the extremely low solubility of the crystals in THF-d₈ and C_6D_6 , we could not get the NMR spectra of **3**.

Selected Figures

Fig. S1 Selected molecular orbitals of **2**.

Fig. S2 Natural Bond Orbitals (Isovalue=0.05) involved in the FMOs of 3.

NMR spectra for the new compounds

Fig. S3 ¹H NMR spectrum of N-(2-(diphenylphosphino)phenyl)-N'-mesitylpivalamidine in CDCl₃ at room temperature. Due to the presence of two possible NH groups, two sets NMR signals for two isomers were observed in the NMR spectrum.

Fig. S4 ³¹P NMR spectrum of N-(2-(diphenylphosphino)phenyl)-N'-mesitylpivalamidine in CDCl₃ at room temperature.

Fig. S5 ¹H NMR spectrum of 1 in C_6D_6 at room temperature.

Fig. S6 ${}^{31}P{}^{1}H$ NMR spectrum of 1 in C₆D₆ at room temperature.

Fig. S7 ${}^{13}C{}^{1}H$ NMR spectrum of 1 in C_6D_6 at room temperature.

Fig. S8 ¹H NMR spectrum of 2 in CD_2Cl_2 at room temperature.

-24.74

Fig. S9 ${}^{31}P{}^{1}H$ NMR spectrum of **2** in CD₂Cl₂ at room temperature.

Fig. S10 ${}^{13}C{}^{1}H$ NMR spectrum of 2 in CD_2Cl_2 at room temperature.

	1	2	3
Formula	C ₃₂ H ₃₄ ClGeN ₂ P	$C_{78}H_{84}Cl_2Ge_2N_4NiP_2$	$C_{64}H_{68}GeN_4NiP_2$
Formula weight	585.62	1414.22	1086.46
Temp. (K)	150(2)	150(2)	150(2)
Crystal system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	8.2747(12)	12.7731(14)	11.2674(13)
<i>b</i> (Å)	9.0970(11)	13.8926(17)	13.6982(15)
<i>c</i> (Å)	20.186(3)	21.428(3)	19.294(2)
α(°)	86.729(4)	101.727(4)	89.501(2)
$\beta(^{\circ})$	79.820(5)	100.858(3)	76.818(2)
γ(°)	79.365(4)	105.974(3)	74.009(2)
V[Å ³]	1469.4(3)	3456.7(7)	2782.5(5)
Ζ	2	2	2
$\rho_{\text{calcd}}(\text{g·cm}^{-3})$	1.324	1.361	1.297
μ(mm-1)	1.211	1.304	0.979
<i>F</i> (000)	608	1476	1140
Collected data	12133	30832	25639
Unique data	6698	15875	12634
GOF on F^2	1.052	1.011	1.006
Final R indexes	R1 = 0.0567,	R1 = 0.0589,	R1 = 0.0402,
	$\omega R2 = 0.1416$	$\omega R2 = 0.1093$	$\omega R2 = 0.0992$
$[I > 2\sigma(I)]$	R1 = 0.0863,	R1 = 0.1244,	R1 = 0.0591,
R indexes (all data)	$\omega R2 = 0.1578$	$\omega R2 = 0.1297$	$\omega R2 = 0.1070$
Completeness	0.991	0.994	0.983

Table S1. Crystal data and structure refinement for compounds 1-3

Compound 2			Compound 3		
Ni	Ni 4p _y 10.8%		Ni	3d _{xz}	4.85%
	3d _{xz}	36.1%		3d _{yz}	5.44%
Ge	4s	3.56%		3d _{x2y2}	25.6%
	4p _x	2.21%	Ge	4s	8.85%
	4p _y	2.46%		4pz	11.6%

Table S2 The calculated main Ni and Ge atom orbital contributions of HOMOs

Theoretical Calculations

All the calculations were performed with Gaussian 09 program suite.^{S4} The ground-state structures of the studied compounds were optimized at the B3LYP/Gen (6-31G*for C, H, N, P, Ge, (Cl) atoms and LANL2Dz for Ni atoms). In addition, the second-order perturbation energy due to the LP (d_{Ni}) \rightarrow LP*(p_{Ge}) orbital interaction ($E_{Ni\cdots Ge}$) obtained by NBO analysis^{S5} at the same level. The calculated results show that there is a strong interaction between Ni and Ge in complex **3**, displaying the obvious Lewis acid character of the germanium moiety in compound **3**.

Coordinates of the studied molecules

2

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	28	0	-1.157876	-0.230702	0.104223
2	15	0	-2.436010	-1.911665	-0.693060
3	15	0	-1.853607	1.062167	1.834573
4	32	0	0.648362	-1.542567	0.597002
5	32	0	-1.073170	1.492317	-1.394053
6	7	0	2.028999	-2.705242	-0.424917
7	7	0	0.064531	-3.433949	0.107046
8	7	0	-1.791300	3.116626	-0.401493
9	7	0	-0.054120	3.270035	-1.676411
10	17	0	1.378102	-2.106959	2.719385
11	17	0	-2.429596	1.718545	-3.239465
12	6	0	1.190261	-3.749189	-0.550557
13	6	0	1.458759	-5.033837	-1.370460

14	6	0	0.193043	-5.893705	-1.570078
15	1	0	0.431711	-6.688440	-2.286142
16	1	0	-0.636081	-5.312710	-1.982791
17	1	0	-0.145851	-6.371876	-0.650493
18	6	0	2.528548	-5.889683	-0.650752
19	1	0	3.500952	-5.393777	-0.630976
20	1	0	2.643174	-6.838270	-1.188293
21	1	0	2.236486	-6.121513	0.379499
22	6	0	1.972743	-4.663313	-2.782105
23	1	0	2.893784	-4.080096	-2.754920
24	1	0	1.214243	-4.106685	-3.341812
25	1	0	2.178850	-5.588934	-3.331830
26	6	0	3.353495	-2.464959	-0.881088
27	6	0	4.465804	-2.902522	-0.129553
28	6	0	5.754129	-2.615642	-0.606268
29	1	0	6.606805	-2.975074	-0.032607
30	6	0	5.976633	-1.876511	-1.766650
31	6	0	4.856214	-1.386224	-2.449484
32	1	0	4.999750	-0.774070	-3.337799
33	6	0	3.553702	-1.654342	-2.028094
34	6	0	2.388020	-1.076315	-2.794144
35	1	0	2.741424	-0.400146	-3.578718
36	1	0	1.713144	-0.511566	-2.142015
37	1	0	1.782239	-1.856188	-3.268107
38	6	0	4.341658	-3.609993	1.201526
39	1	0	4.664117	-2.938663	2.006746
40	1	0	4.985157	-4.497370	1.238897
41	1	0	3.319163	-3.906403	1.430325
42	6	0	7.373881	-1.613985	-2.278959
43	1	0	8.124419	-1.773722	-1.497859

44	1	0	7.481261	-0.586892	-2.646402
45	1	0	7.623576	-2.281728	-3.114618
46	6	0	-1.091193	-4.092662	0.542124
47	6	0	-1.005761	-5.219126	1.376842
48	1	0	-0.022216	-5.593537	1.643957
49	6	0	-2.153343	-5.835074	1.868207
50	1	0	-2.064537	-6.712299	2.503442
51	6	0	-3.407951	-5.312096	1.553177
52	1	0	-4.312144	-5.788421	1.922203
53	6	0	-3.501141	-4.160044	0.770726
54	1	0	-4.481900	-3.752492	0.552298
55	6	0	-2.361169	-3.517053	0.263914
56	6	0	-4.247373	-1.512372	-0.751807
57	6	0	-4.924167	-1.331163	-1.967743
58	1	0	-4.408469	-1.490788	-2.907610
59	6	0	-6.262238	-0.930409	-1.986848
60	1	0	-6.763283	-0.790517	-2.941141
61	6	0	-6.950715	-0.711242	-0.794522
62	1	0	-7.993373	-0.404996	-0.811209
63	6	0	-6.285238	-0.877776	0.422410
64	1	0	-6.807023	-0.701224	1.359452
65	6	0	-4.944248	-1.258712	0.443866
66	1	0	-4.440181	-1.361319	1.399985
67	6	0	-2.134602	-2.564400	-2.411064
68	6	0	-2.755212	-3.742437	-2.863672
69	1	0	-3.409618	-4.298909	-2.198677
70	6	0	-2.542422	-4.206208	-4.162012
71	1	0	-3.031715	-5.117568	-4.496229
72	6	0	-1.703438	-3.500677	-5.030032
73	1	0	-1.539666	-3.860349	-6.042568

74	6	0	-1.082280	-2.331360	-4.591102
75	1	0	-0.436125	-1.769903	-5.260661
76	6	0	-1.296262	-1.868429	-3.288829
77	1	0	-0.818159	-0.955646	-2.952301
78	6	0	-0.844181	3.961454	-0.834838
79	6	0	-0.635573	5.435130	-0.416352
80	6	0	0.790494	5.613353	0.158910
81	1	0	0.930251	5.010851	1.062135
82	1	0	0.927013	6.665462	0.434649
83	1	0	1.565947	5.355452	-0.563987
84	6	0	-0.803734	6.351906	-1.651062
85	1	0	-0.017364	6.190192	-2.390001
86	1	0	-0.750138	7.397023	-1.324317
87	1	0	-1.774119	6.201948	-2.137213
88	6	0	-1.624879	5.905324	0.668394
89	1	0	-2.650586	5.977636	0.303966
90	1	0	-1.318747	6.905576	0.995591
91	1	0	-1.613028	5.251835	1.542788
92	6	0	1.129980	3.593425	-2.393790
93	6	0	2.386205	3.211025	-1.855224
94	6	0	3.544137	3.470203	-2.589100
95	1	0	4.504042	3.182181	-2.164504
96	6	0	3.507259	4.076155	-3.851292
97	6	0	2.257743	4.387234	-4.383044
98	1	0	2.197810	4.821640	-5.379711
99	6	0	1.061407	4.140377	-3.693357
100	6	0	-0.243069	4.431333	-4.402390
101	1	0	-1.113123	4.196976	-3.790762
102	1	0	-0.318150	3.823715	-5.312124
103	1	0	-0.301519	5.482283	-4.712084

104	6	0	2.490749	2.516917	-0.518107
105	1	0	2.150210	3.149325	0.308088
106	1	0	3.528152	2.233053	-0.314155
107	1	0	1.880044	1.608134	-0.481977
108	6	0	4.781314	4.377680	-4.605685
109	1	0	5.275662	5.275786	-4.211385
110	1	0	4.585454	4.552330	-5.668765
111	1	0	5.501059	3.554718	-4.525029
112	6	0	-3.006722	3.162676	0.293728
113	6	0	-4.074046	3.947710	-0.169726
114	1	0	-3.916673	4.575967	-1.040833
115	6	0	-5.320679	3.896736	0.447090
116	1	0	-6.131108	4.518812	0.076930
117	6	0	-5.528597	3.023283	1.513839
118	1	0	-6.500602	2.964985	1.995859
119	6	0	-4.488824	2.201483	1.949990
120	1	0	-4.676502	1.506718	2.760569
121	6	0	-3.213592	2.250337	1.366115
122	6	0	-0.627647	2.188653	2.670468
123	6	0	-1.003678	3.377819	3.316229
124	1	0	-2.037307	3.710587	3.279911
125	6	0	-0.061678	4.143487	4.007222
126	1	0	-0.371388	5.062112	4.499571
127	6	0	1.271214	3.729285	4.068076
128	1	0	2.003123	4.323224	4.609424
129	6	0	1.656536	2.547166	3.432882
130	1	0	2.687239	2.205176	3.478336
131	6	0	0.713417	1.787083	2.736739
132	1	0	1.019669	0.868334	2.248777
133	6	0	-2.511085	0.171067	3.332666

134	6	0	-2.491717	-1.229542	3.318777
135	1	0	-2.112812	-1.740930	2.440887
136	6	0	-2.924750	-1.967865	4.423532
137	1	0	-2.896129	-3.053271	4.385320
138	6	0	-3.378694	-1.310603	5.565933
139	1	0	-3.714155	-1.879960	6.428939
140	6	0	-3.386017	0.086952	5.602620
141	1	0	-3.724435	0.607270	6.495097
142	6	0	-2.950028	0.820743	4.499858
143	1	0	-2.945997	1.904444	4.556298
144	6	0	6.430906	0.977800	2.497162
145	6	0	7.053591	1.424235	3.603922
146	1	0	7.994642	1.966045	3.522299
147	6	0	6.427688	1.272658	4.971928
148	1	0	5.815038	2.166910	5.182944
149	1	0	7.199130	1.246429	5.750884
150	6	0	5.543580	0.016719	5.064939
151	1	0	6.180555	-0.876506	5.184683
152	1	0	4.915251	0.062069	5.962197
153	6	0	4.697980	-0.162339	3.825261
154	1	0	3.761978	-0.711769	3.895513
155	6	0	5.136974	0.283316	2.634690
156	1	0	4.554619	0.101964	1.732964
157	6	0	6.983036	1.168854	1.107842
158	1	0	7.956517	1.669821	1.125379
159	1	0	6.301530	1.773704	0.492661
160	1	0	7.097359	0.208113	0.588752

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	32	0	0.846058	-0.235108	0.356803
2	7	0	-1.354720	-1.831564	-0.723764
3	7	0	0.921382	-1.878750	-0.852566
4	7	0	1.794894	1.262671	-0.615524
5	7	0	3.432492	0.568554	0.746566
6	15	0	-3.156561	-0.793413	1.303718
7	15	0	-1.192397	1.984383	-0.828006
8	6	0	-3.713304	-1.831110	-0.110226
9	6	0	-5.047343	-2.107539	-0.425562
10	1	0	-5.825319	-1.844318	0.285482
11	6	0	-5.396003	-2.675697	-1.653350
12	1	0	-6.437069	-2.882014	-1.884893
13	6	0	-4.394889	-2.929114	-2.593458
14	1	0	-4.652961	-3.324792	-3.572806
15	6	0	-3.058635	-2.666197	-2.294215
16	1	0	-2.289951	-2.833545	-3.040510
17	6	0	-2.684228	-2.170343	-1.031080
18	6	0	-2.733927	-1.966543	2.664060
19	6	0	-1.741665	-1.588518	3.581819
20	1	0	-1.234095	-0.635783	3.457180
21	6	0	-1.387716	-2.434277	4.634432
22	1	0	-0.616694	-2.128323	5.336600
23	6	0	-2.012341	-3.675390	4.775424
24	1	0	-1.731220	-4.338013	5.589736
25	6	0	-2.993111	-4.066988	3.861335

26	1	0	-3.477237	-5.035006	3.962200
27	6	0	-3.353679	-3.217700	2.812667
28	1	0	-4.114147	-3.531328	2.102667
29	6	0	-4.709823	0.018641	1.891491
30	6	0	-5.405170	-0.357058	3.050792
31	1	0	-5.049437	-1.186333	3.653992
32	6	0	-6.557925	0.330418	3.440669
33	1	0	-7.082980	0.028253	4.343363
34	6	0	-7.035307	1.395535	2.676303
35	1	0	-7.932610	1.927719	2.981273
36	6	0	-6.348943	1.778681	1.520721
37	1	0	-6.707646	2.610476	0.920122
38	6	0	-5.191134	1.103785	1.137526
39	1	0	-4.656661	1.420655	0.246468
40	6	0	-0.263064	-2.567480	-0.928417
41	6	0	-0.277846	-4.149599	-1.002991
42	6	0	-1.569407	-4.768215	-0.407541
43	1	0	-2.445236	-4.660164	-1.044586
44	1	0	-1.801841	-4.347199	0.575543
45	1	0	-1.397526	-5.842438	-0.275168
46	6	0	-0.085750	-4.701903	-2.436097
47	1	0	-0.081317	-5.798177	-2.392793
48	1	0	0.862316	-4.383328	-2.875455
49	1	0	-0.898850	-4.408182	-3.106135
50	6	0	0.866093	-4.715019	-0.125703
51	1	0	0.822683	-4.320357	0.894060
52	1	0	1.849130	-4.508391	-0.540975
53	1	0	0.757098	-5.803827	-0.067940
54	6	0	2.097708	-2.225554	-1.588911
55	6	0	2.083274	-2.041751	-2.996931

56	6	0	3.230478	-2.335986	-3.736959
57	1	0	3.203364	-2.196935	-4.816492
58	6	0	4.408610	-2.789690	-3.134186
59	6	0	4.411703	-2.924644	-1.746558
60	1	0	5.318636	-3.264595	-1.249231
61	6	0	3.291981	-2.634793	-0.953830
62	6	0	0.857293	-1.524765	-3.714524
63	1	0	1.129475	-1.126276	-4.696574
64	1	0	0.365549	-0.730747	-3.147128
65	1	0	0.112869	-2.314255	-3.877223
66	6	0	5.643326	-3.081644	-3.955534
67	1	0	6.196280	-2.161700	-4.189926
68	1	0	5.388461	-3.555493	-4.910495
69	1	0	6.330705	-3.746478	-3.421675
70	6	0	3.427890	-2.803676	0.543753
71	1	0	2.503564	-2.571008	1.072475
72	1	0	4.206604	-2.144287	0.936820
73	1	0	3.713678	-3.833194	0.794603
74	6	0	1.425225	1.715975	-1.894010
75	6	0	2.355620	1.697147	-2.948057
76	1	0	3.351034	1.309980	-2.750368
77	6	0	2.018864	2.155516	-4.220004
78	1	0	2.762844	2.137732	-5.012521
79	6	0	0.728458	2.618733	-4.473537
80	1	0	0.453088	2.979490	-5.460666
81	6	0	-0.220700	2.598324	-3.448310
82	1	0	-1.229690	2.937603	-3.658898
83	6	0	0.096136	2.145166	-2.160358
84	6	0	-2.772140	2.307725	-1.748458
85	6	0	-3.265171	1.277163	-2.570768

86	1	0	-2.700467	0.355006	-2.673077
87	6	0	-4.477160	1.418118	-3.244469
88	1	0	-4.838599	0.607447	-3.871155
89	6	0	-5.230324	2.586800	-3.098969
90	1	0	-6.179301	2.694173	-3.617672
91	6	0	-4.757963	3.611055	-2.278585
92	1	0	-5.336246	4.523539	-2.156493
93	6	0	-3.537400	3.475085	-1.608960
94	1	0	-3.189549	4.283085	-0.974562
95	6	0	-0.965494	3.502103	0.203771
96	6	0	-0.697357	4.768854	-0.340841
97	1	0	-0.585193	4.882788	-1.415850
98	6	0	-0.567198	5.883763	0.488743
99	1	0	-0.360496	6.858675	0.054837
100	6	0	-0.694534	5.745580	1.873665
101	1	0	-0.588032	6.613671	2.518907
102	6	0	-0.953451	4.489858	2.425646
103	1	0	-1.049158	4.376033	3.502288
104	6	0	-1.089310	3.374675	1.594763
105	1	0	-1.290340	2.393401	2.016654
106	6	0	2.983693	1.562320	0.036624
107	6	0	3.549604	3.030812	0.081079
108	6	0	2.854206	4.044141	-0.851702
109	1	0	3.224765	5.043964	-0.594490
110	1	0	1.771807	4.053937	-0.721154
111	1	0	3.075692	3.873842	-1.906431
112	6	0	5.055947	3.074178	-0.251747
113	1	0	5.256645	2.664194	-1.247765
114	1	0	5.659133	2.534093	0.478621
115	1	0	5.388958	4.119199	-0.252091

116	6	0	3.341055	3.556509	1.524483
117	1	0	3.892520	2.968655	2.259643
118	1	0	2.278607	3.559713	1.792420
119	1	0	3.702466	4.590226	1.583941
120	6	0	4.470987	0.483687	1.687689
121	6	0	5.782229	0.121196	1.286461
122	6	0	6.771057	-0.057531	2.262531
123	1	0	7.774702	-0.325468	1.935014
124	6	0	6.514644	0.076868	3.626587
125	6	0	5.195747	0.350458	4.005938
126	1	0	4.949340	0.405356	5.065242
127	6	0	4.169489	0.529437	3.076927
128	6	0	6.139757	-0.115673	-0.164088
129	1	0	5.266716	-0.415172	-0.748722
130	1	0	6.893034	-0.907529	-0.244065
131	1	0	6.563558	0.776943	-0.640269
132	6	0	7.609149	-0.080656	4.656408
133	1	0	8.002191	0.892909	4.981181
134	1	0	8.453585	-0.654216	4.258597
135	1	0	7.246814	-0.595040	5.554295
136	6	0	2.749855	0.705991	3.561642
137	1	0	2.321307	1.674389	3.280312
138	1	0	2.703601	0.624020	4.652771
139	1	0	2.093822	-0.057285	3.128418
140	28	0	-1.396736	0.018824	0.047645

References

S1 G. L. Wegner, R. J. F. Berger, A. Schier and H. Schmidbaur, *Organometallics* 2001, **20**, 418.

- [2] P. H. M. Budzelaar, A. B. van Oort and A. G. Orpen, Eur. J. Inorg. Chem. 1998, 1485.
- [3] M. K. Copper, J. M. Dowries and E. R. Duekworth, Aust. J. Chem. 1992, 45, 595.
- [4] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.
- Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
- Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
- Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
- Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V. N. Staroverov, T. Kieth, R. Kobayashi, J.
- Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N.
- Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
- Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
- R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.
- Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision B.01*, Gaussian, Inc., Wallingford CT, 2010.
- [5] A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev. 1988, 88, 899.