Rhodamine based biocompatible chemosensor for Al³⁺, Cr³⁺ and Fe³⁺ ions: extraordinary fluorescence enhancement and precursor for future chemosensors

Ankita Roy,^a Soumi Das,^a Sukriti Sacher,^b Sushil Kumar Mandal^c and Partha Roy^{*,a}

^a Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India

E-mail: partha.roy@jadavpuruniversity.in; proy@chemistry.jdvu.ac.in

^b Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India

^c Department of Ecological Studies and International Centre for Ecological Engineering (ICEE),

University of Kalyani, Kalyani, Nadia 741235 West Bengal, India

Fig. s1 ESI mass spectrum of (A) HL-CHO, (B) Al^{3+} complex of HL-CHO, (C) Cr^{3+} complex of HL-CHO and (D) Fe³⁺ complex of HL-CHO.

Fig. s2 FT-IR spectrum of (A) HL-CHO, (B) Al^{3+} complex of HL-CHO, (C) Cr^{3+} complex of HL-CHO and (D) Fe³⁺ complex of HL-CHO.

Fig. s3 ¹³C NMR spectrum of (A) HL-CHO in DMSO- d_6 and (B) HL-CHO in the presence of Al³⁺ ion in DMSO- d_6 .

Fig. s4 (A) Fluorescence intensity of HL-CHO (40 μ M) at 550 nm in the presence of one equivalent of different trivalent metal ions in 10 mM HEPES buffer in water:methanol (1:9) (pH 7.4) at room temperature; (B) Same result represented as bar diagram. Here, HL denotes HL-CHO.

Fig. s5 Fluorescence intensity of HL-CHO with (A) Al^{3+} , (B) Cr^{3+} and (C) Fe^{3+} ions in the presence of five equivalent of other metal ions in 10 mM HEPES buffer.4 in H₂O:methanol (1:9, v/v) (pH 7) at room temperature.

Fig. s6 Job's plot analysis with (A) Al^{3+} , (B) Cr^{3+} and (C) Fe^{3+} ions. Analysis shows 1:1 binding with HL-CHO. Here, L denotes HL-CHO.

Fig. s7 Fluorescence spectrum of HL-CHO in solid state and in solution (HEPES buffer)

Fig. s8 Non-linear plot of fluorescence intensity (at 550 nm) vs. (A) $[Al^{3+}]$, (B) $[Cr^{3+}]$ and (C) $[Fe^{3+}]$

Fig. s9 Excited state fluorescence decay behavior of HL-CHO and its complex with Al^{3+} , Cr^{3+} and Fe³⁺ ions in 10 mM HEPES buffer.4 in H₂O:methanol (1:9, v/v) (pH 7) at room temperature. Here, HL denotes HL-CHO.

Determination of LOD of HL:

Limit of detection (LOD) for our probe has been determined by 3σ method by the following equation: $DL = K^* \text{ Sb1/S}$

where K = 2 or 3 (3 in this case); here Sb1 is the standard deviation of the blank HL-CHO solution; and S is the slope of the calibration curve obtained from Linear dynamic plot of F.I. vs $[M^{3+}]$ in M. From the calculated high LOD values, it can be concluded that HL is a very good sensor for all the cations.

Fig. s10 Determination of Sb1 of the blank, HL-CHO solution.

Fig. s11 Linear dynamic plot of F.I. (at 550 nm) vs. [Al³⁺] for the determination of S (slope)

Fig. s12 Linear dynamic plot of F.I. (at 550 nm) vs. $[Cr^{3+}]$ for the determination of S (slope)

Fig. s13 Linear dynamic plot of F.I. (at 550 nm) vs. [Fe³⁺] for the determination of S (slope)

Fig. s14 Fluorescence intensities of HL-CHO + M^{3+} (1 : 1) in the presence of Na₂-EDTA for several cycles. Fluorescence spectra monitored at 550 nm. Here, HL denotes HL-CHO.

Fig. s15 % cell viability of human neuroblastoma SH-SY5Y cells incubated with different concentrations (1 μ M-100 μ M) of HL-CHO for 12 h as determined by MTT assay. Results are expressed as mean \pm S.E of three independent experiments.

Species	Туре	С	Н	Ν
HL-CHO	Calculated	73.73	6.35	9.30
$(C_{37}H_{38}N_4O_4)$	Found	73.65	6.26	9.23
$HL-CHO + Al^{3+}$	Calculated	64.53	5.12	10.17
([Al(L')NO ₃])	Found	64 42	4 93	10.12
$(C_{37}H_{35}AlN_5O_7)$	Tound	01.12	1.95	10.12
$HL-CHO + Cr^{3+}$	Calculated	60.73	5.10	9.57
$([Cr(L')(H_2O)]NO_3)$	Found	60.66	5.02	9.45
$(C_{37}H_{37}CrN_5O_8)$			0.02	2010
$HL-CHO + Fe^{3+}$	Calculated	60.42	5.07	9.52
$([Fe(L')(H_2O)]NO_3)$	Found	60.30	4.98	9.40
$(C_{37}H_{37}FeN_5O_8)$				

Table S1 Elemental analysis of HL-CHO and its complexes with Al^{3+} , Cr^{3+} and Fe^{3+}

Entry	Probe	Excitation	Fluorescence	Concerned	LOD	Binding Constant (K _a) or	Cell	Ref.
		(nm)/	Enhancement	Cations		Dissociation Constant (K _d)	Imaging	
		Emission (nm)	(fold)	21 21 21		2:		
1.	HO	500/552	98 (Al ³⁺)	$Al^{3+}, Cr^{3+}, Fe^{3+}$	1.18 nM	$K_d = 5.20 \pm 0.39 \ \mu M \ (Al^{3+})$	No	22
			$50 (Cr^{3+})$		$(Al^{3+}),$	$= 4.07 \pm 0.13 \ \mu M \ (Fe^{3+})$		
			$38 (Fe^{3+})$		1.80 nM	$= 6.49 \pm 0.21 \ \mu M \ (Cr^{3+})$		
					$(Cr^{3+}),$			
					4.04 nM			
	НЧН				$({\rm Fe}^{3+})$			
2.		502/558	$31 (Al^{3+})$	$Al^{3+}, Cr^{3+}, Fe^{3+}$	1.34 μM	$K_a = (1.34 \pm 0.1) \times 10^4 \text{ M}^{-1} (\text{Al}^{3+})$	Yes	15c
			$26 (Cr^{3+})$		$(Al^{3^{+}}),$	$= (0.94+0.01) \times 10^4 \text{ M}^{-1} (\text{Fe}^{3+})$		
			41 (Fe ³⁺)		2.28 µM	$-(0.87\pm0.01)\times10^4 \text{ M}^{-1} (\text{Cr}^{3+})$		
					(Cr ³⁺),	$=(0.87\pm0.01)^{-10}$ M (CI)		
	$ \land_{N} \land \land_{O} \land \land_{N} \land$				1.28 µM			
	н н				$({\rm Fe}^{3+})$			
3.		330/582	$62 (Al^{3+})$	$Al^{3+}, Cr^{3+}, Fe^{3+}$	1.74 nM	$K_{a} = 1 \times 10^{4} \text{ M}^{-1} (\text{A}1^{3+})$	No	15a
		(Al^{3+})	$1.7(Cr^{3+})$, ,	$(Al^{3+}),$	$= 1.2 \times 10^2 \text{ M}^{-1} (\text{Fe}^{3+})$		
		330/376	1.47 (Fe ³⁺)		2.36 uM	$= 26 \times 10^2 M^{-1} (Cr^{3+})$		
		(Cr^{3+},Fe^{3+})			$(Cr^{3+}).$	-2.0×10 M (Cr)		
	$ \sim_N \downarrow_0 \downarrow_0 \downarrow_N \sim$	()			2.90 uM			
					$({\rm Fe}^{3+})$			
4.	но_//	500/552	630	A1 ³⁺	2.8 nM	$K_d = 4.88 \ (\pm 0.18) \ \mu M$	Yes	23
					210 1111			
	F-4-1N-							
	N							
	LITT .							
5		500/550	$650(\Delta 1^{3+})$	$\Delta 1^{3+}$ $7n^{2+}$	10.98 nM	$K = 0.28 \times 10^3 M^{-1} (\Lambda 1^{3+})$	Ves	24
5.		$(\Delta 1^{3+})$	$7(7n^{2+})$	711 , Z 11	$(\Delta 1^{3+})$	$K_a = 9.36 \times 10^{-1} (AI)$	105	21
	но-({})	370/454	/ (211)		76.92 nM	$= 4.73 \times 10$ M (Zn)		
	, o , N=/	$(7n^{2+})$			$(7n^{2+})$			

 Table S2 Comparison of a few aspects of some recently published related rhodamine based chemosensors

6.	но-	528/552	 Fe ³⁺	 	Yes	19b
	ſ~~~ ^{N≈} ∕					
7.		528/552	 Fe ³⁺	 	Yes	19b
	E H ~ N=					
8.		528/552	 Fe^{3+}	 	Yes	19b
	ſ~,~ ^{N≈} /					
9.	O ₂ N	528/552	 Fe ³⁺	 	Yes	19b
			_ 3+			
10.		528/552	 Fe	 	Yes	19b

11.	528/552		Fe ³⁺			Yes	19b
12.	510/555	14 (Al ³⁺) 10 (Cr ³⁺) 21 (Fe ³⁺)	Al ³⁺ , Cr ³⁺ , Fe ³	$\begin{array}{c} 0.34 \ \mu M \\ (Al^{3^{+}}), \\ 0.31 \ \mu M \\ (Cr^{3^{+}}), \\ 0.29 \ \mu M \\ (Fe^{3^{+}}) \end{array}$	$\begin{split} K_a &= 8.2 \times 10^4 \text{ M}^{-1} \text{ (AI}^{3+}) \\ &= 6.7 \times 10^4 \text{ M}^{-1} \text{ (Fe}^{3+}) \\ &= 6.0 \times 10^4 \text{ M}^{-1} \text{ (Cr}^{3+}) \end{split}$	Yes	15b
13.	525/556	18	Fe ³⁺	0.030 µM		Yes	32a
14.	500/556		Hg ²⁺	0.5-10 μM	3.5×10 ⁶ (Stability Constant)	No	21
15.	525/581		Hg ²⁺	2.5×10 ⁻⁸ M	$K_a = 2.1 \times 10^7 M^{-1}$	Yes	32b

16.	525/581		Hg^{2+}	4.2×10 ⁻⁸ M	$K_a = 4.4 \times 10^5 M^{-1}$	Yes	32b
17.	525/581		Al	2.9×10 ⁻ M	$K_a = 3.9 \times 10^3 M^{-1}$	Yes	32b
18.	554/583		Al ³⁺ , Hg ²⁺	$\begin{array}{c} 1.4 \times 10^{-7} \text{ M} \\ (\text{Hg}^{2^+}) \\ 1.1 \times 10^{-8} \text{ M} \\ (\text{Al}^{3^+}) \end{array}$	$\begin{split} K_{a} &= 7.0 \times 10^{3} \text{ M}^{-1} (\text{Hg}^{2+}) \\ &= 4.5 \times 10^{4} \text{ M}^{-1} (\text{Al}^{3+}) \end{split}$	No	32c
19.	554/583		Al ³⁺ , Hg ²⁺	$\begin{array}{c} 1.89 \times 10^{-8} \\ M \ (\mathrm{Hg}^{2+}) \\ 1.64 \times 10^{-7} \\ M \ (\mathrm{Al}^{3+}) \end{array}$	$K_{a} = 1.49 \times 10^{10} \text{ M}^{-2} (\text{Hg}^{2+})$ $= 8.0 \times 10^{9} \text{ M}^{-2} (\text{Al}^{3+})$	No	32c
20.	520/570	13 (Fe ³⁺) 3 (Cu ²⁺)	Cu ²⁺ (Colorimetric), Fe ³⁺ (Fluorimetric)	69 μM (Cu ²⁺) 100 μM (Fe ³⁺)	$\begin{split} \mathbf{K}_{a} &= 1.65 \times 10^{3} \text{ M}^{-1} (\text{Cu}^{2+}) \\ &= 9.75 \times 10^{2} \text{ M}^{-1} (\text{Fe}^{3+}) \end{split}$	No	32d
21.	570/593		Cu ²⁺ (Colorimetric), Fe ³⁺ (Fluorimetric)	48 nM (Cu ²⁺) 3.9 nM (Fe ³⁺)	$K_{a} = 5.80 \times 10^{4} \text{ M}^{-1} (\text{Cu}^{2+})$ $= 6.50 \times 10^{4} \text{ M}^{-1} (\text{Fe}^{3+})$	No	32e

22.		510/572		Cu ²⁺ (Colorimetric), Fe ³⁺ (Fluorimetric)	18 nM (Cu ²⁺) 33 nM (Fe ³⁺)	$K_{d} = 13.99 \times 10^{-2} \text{ M (Cu}^{2+})$ $= 1.3 \times 10^{-2} \text{ M (Fe}^{3+})$	Yes	32f
23.		560/578	90 (Fe ³⁺)	Cu ²⁺ (Colorimetric), Fe ³⁺ (Fluorimetric)			No	32g
24.		550/582		Cu ²⁺ (Colorimetric), Fe ³⁺ (Fluorimetric)	38 nM (Cu ²⁺) 92 nM (Fe ³⁺)	$K_{a} = 7.1 \times 10^{5} \text{ M}^{-1} (\text{Cu}^{2+})$ = 7.4 × 10 ⁴ M ⁻¹ (Fe ³⁺)	No	32h
25.		530/582	1098 (Fe ³⁺)	Cu ²⁺ (Colorimetric), Fe ³⁺ (Fluorimetric)	6.82×10 ⁻² μmol/L (Cu ²⁺) 17 nmol/L (Fe ³⁺)	$K_{a} = 7.1 \times 10^{5} \text{ M}^{-1} (\text{Cu}^{2+})$ = 7.4 × 10 ⁴ M ⁻¹ (Fe ³⁺)	No	32i
26.	$\begin{array}{c} & & \\$	515/572 (Cu ²⁺) 515/580 (Fe ³⁺)	20 (Cu ²⁺) 14 (Fe ³⁺)	Cu ²⁺ , Fe ³⁺			No	32j
27.	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	500/573 (Cu ²⁺) 500/575 (Fe ³⁺)		Cu ²⁺ , Fe ³⁺	10 nM (Cu ²⁺) 164 nM (Fe ³⁺)	$K_{a} = 4.22 \times 10^{5} \text{ M}^{-1} (\text{Cu}^{2+})$ = 2.94×10 ³ M ⁻¹ (Fe ³⁺)	No	32j

28.	500/552		Cu ²⁺ (Colorimetric), Fe ³⁺ (Fluorimetric)	250 nM (Cu ²⁺) 90 nM (Fe ³⁺)	$K_{a} = 1.9 \times 10^{4} \text{ M}^{-1} (\text{Cu}^{2+})$ = 1.5×10 ⁵ M ⁻¹ (Fe ³⁺)	No	321
29.	521/586		Cu ²⁺ (Colorimetric), Hg ²⁺ (Fluorimetric)	5.92×10 ⁻⁷ M (Cu ²⁺) 2.85×10 ⁻⁶ M (Hg ²⁺)	$ \begin{aligned} K_a &= 5.38 \times 10^4 \text{ M}^{-1} (\text{Cu}^{2+}) \\ &= 1.63 \times 10^5 \text{ M}^{-1} (\text{Hg}^{2+}) \end{aligned} $	No	32m
30.	550/580		Fe ³⁺	5μΜ	$K_a = 4.52 \times 10^5 M^{-1}$	Yes	32n
31.	500/554	90	Hg ²⁺	In ppb level	$K_a = 8.0 \times 10^5 \pm 0.1 \text{ M}^{-2}$	Yes	320
32.	530/586	100 (Hg ²⁺)	Cu ²⁺ (Colorimetric), Hg ²⁺ (Fluorimetric)	3.37 µM (Cu ²⁺) 150 nM (Hg ²⁺)	$ \begin{array}{l} K_{a} = 2.2 \times 10^{3} M^{-1} (Cu^{2+}) \\ = 1.3 \times 10^{4} M^{-1} (Hg^{2+}) \end{array} $	No	32p
33.	552/582	80 (Hg ²⁺)	Cu ²⁺ (Colorimetric), Hg ²⁺ (Fluorimetric)			No	32q

34.		450/582	259 (Hg ²⁺)	Cu ²⁺ (Colorimetric), Hg ²⁺ (Fluorimetric)	1.63 μM (Cu ²⁺) 2.36 μM (Hg ²⁺)	$K_{a} = 1.61 \times 10^{5} M^{-1} (Cu^{2+})$ = 3.28×10 ⁵ M ⁻¹ (Hg ²⁺)	Yes	32r
35.		520/580	132	Cu ²⁺	1 nM	$K_a = 1.36 \times 10^5 M^{-1}$	Yes	32s
36.		520/582		Hg ²⁺	0.11 μΜ	$K_a = 3.03 \times 10^4 \text{ M}^{-1}$	Yes	32t
37.		500/545	27	Hg ²⁺	26.3 nM	$K_a = 3.39 \times 10^4 \text{ M}^{-1}$	Yes	32u
38.		520/580	100	Cr ³⁺	7.5 nM	$K_a = 3.4 \times 10^4 \text{ M}^{-1}$	Yes	4a
39.		560/582	100	Fe ³⁺	0.067 µM	$K_a = 2.70 \times 10^4 M^{-1}$	Yes	32v
40.	Julio Ly - Julio Ly	560/582	100	Fe ³⁺	0.345 µM	$K_a = 1.97 \times 10^4 \text{ M}^{-1}$	Yes	32v

41.	540/578		Al ³⁺	0.16 μΜ	$K_a = 6.9 \times 10^4 M^{-1}$	Yes	3e
42.	530/561		Fe ³⁺	0.29 µM	$K_a = 1.4 \times 10^{10} M^{-2}$	No	32w
43.	525/586	75	Hg ²⁺	2.1 nM	$K_a = 1.05 \times 10^5 M^{-1}$	Yes	32x
44.	510/556		Fe ³⁺	0.29 μM	$K_a = 1.17(\pm 0.50) \times 10^4 M^{-1}$	No	32y
45	500/550	1465 (Al ³⁺) 588 (Cr ³⁺) 800 (Fe ³⁺)	Al ³⁺ , Cr ³⁺ , Fe ³⁺	6.97 nM (Al ³⁺), 15.80 nM (Cr ³⁺), 14.00 nM (Fe ³⁺)	$\begin{split} K_a &= 1.47 \times 10^5 \text{ M}^{-1} \text{ (Al}^{3+}) \\ &= 6.24 \times 10^4 \text{ M}^{-1} \text{ (Cr}^{3+}) \\ &= 8.74 \times 10^4 \text{ M}^{-1} \text{ (Fe}^{3+}) \end{split}$	Yes	Present study