Electronic Supporting Information

Syntheses and structures of a new 2D layered borate and a novel 3D porous-

layered alunminoborate

Chong-An Chen,^a Rui Pan^a and Guo-Yu Yang *a,b

^aMOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China. ^bCollege of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China. E-mail: <u>ygy@bit.edu.cn</u>, ygy@fjirsm.ac.cn. Fax: (+86) 10-6891-8572

Table S1. Hydrogen bond distances (Å) and angles (°) for the compound 1.

Table S2. Hydrogen bond distances (Å) and angles (°) for the compound 2.

Figure S1. The PXRD patterns of 1 and 2, respectively.

Figure S2. Hydrogen bonds between 1,2-dap molecule and inorganic framework in 1.

- Figure S3. View of different $B_7 FBBs$: a) $[B_7O_9(OH)_5]^{2-}$; b) $[B_7O_9(OH)_6]^{3-}$; c) $[B_7O_{10}(OH)_3]^{2-}$; d, e) $[B_7O_{12}(OH)_3]^{2-}$; f) $[B_7O_{12}(OH)_4]^{7-}$; g) $[B_7O_{14}]^{7-}$; h) $[B_7O_{14}(OH)_2]^{9-}$; i) $[B_7O_{15}]^{9-}$; j) $[B_7O_{15}(OH)_2]^{11-}$; k) $[B_7O_{16}]^{11-}$; l) $[B_7O_{17}]^{13-}$; m) $[B_7O_{13}(OH)]^{6-}$ (This work).
- Figure S4. View of compositions of channel E (a), F (b) and G (c).
- Figure S5. The metal ions positions in the inorganic framework in 2.
- Figure S6. View of *FBB* (a), 2D monolayer (b), porous layer (c), channel system (d) three types of 14-MR channels (e, f and g) in **3**.
- **Figure S7.** a) The [Al₂B₈O₂₀(OH)₂]¹²⁻ dimeric cluster in 4; b) View of 3D porous layer of 4; (c) The three types of 14-MR channels (A, B and C); d) The intercommunicated channel system in 4.

Figure S8. The TG curves of 1 and 2, respectively.

Figure S9. IR spectra of 1 and 2, respectively.

D-H···A	d(D-H)	d(H···A)	d(D····A)	∠(DHA) (°)
N(1) -H(1A) ···O(8)#1	0.89	1.96	2.827(3)	163.0
N(1) -H(1B) ···O(1)#1	0.89	2.45	3.170(3)	138.0
N(1) -H(1B) ····O(2)#1	0.89	2.27	3.107(3)	157.5
N(1) -H(1C) ···O(7)#2	0.89	2.17	2.958(3)	147.0
N(1) -H(1C) ···O(10)#2	0.89	2.48	3.151(3)	132.6
N(2) -H(2B) ···O(7)#4	0.89	1.94	2.811(4)	160.0
N(2) -H(2C) ···O(8)#5	0.89	2.22	2.990(3)	145.0
N(2) -H(2C) ···O(9)#5	0.89	2.41	3.165(3)	143.6
N(2) -H(2A) ···O(11)#3	0.89	2.37	3.222(3)	160.0
O(6) -H(6A) ···O(5)#4	0.82	1.95	2.766(3)	177.0
C(1) -H(1E) ···O(3)#2	0.97	2.42	3.325(3)	155.0
$C(2) - H(4) \cdots O(9) \# 5$	0.96	2.47	3.296(5)	143.0

Table S1. Hydrogen bond distances (Å) and angles (°) for the compound 1.

Symmetric codes: #1: 1-x,1-y,2-z; #2: 1/2-x,1/2+y,3/2-z; #3: x,1+y,z; #4: 1-x,1-y,1-z; #5:

3/2-x,1/2+y,3/2-z.

Table S2. Hydrogen bond distances (Å) and angles (°) for the compound 2.

D-H···A	d(D-H)	d(H····A)	d(D····A)	∠(DHA) (°)
O(1) -H(1) ···O(24)#1	0.77	2.08	2.845(6)	177.0

Symmetric codes: #1: 1+x,y,z

Figure S1. The PXRD patterns of 1 and 2, respectively.

Figure S2. Hydrogen bonds between 1,2-dap molecule and inorganic framework in 1.

Figure S3. View of different B₇ FBBs: a) $[B_7O_9(OH)_5]^2 \cdot ([7:(5\Delta+2T)])$; b) $[B_7O_9(OH)_6]^3 \cdot ([7:(4\Delta+3T)])$; c) $[B_7O_{10}(OH)_3]^2 \cdot ([7:(5\Delta+2T)])$; d,e) $[B_7O_{12}(OH)_3]^2 \cdot ([7:(3:2\Delta+1T) + (1:\Delta) + (3:2\Delta+1T)] \text{ and } [7:(6:3\Delta+3T) + (1:\Delta)])$; f) $[B_7O_{12}(OH)_4]^7 - ([7:(1:T) + (5:4\Delta+1T) + (1:T)])$; h) $[B_7O_{14}(OH)_2]^9 \cdot ([7:(1:\Delta) + (5:2\Delta+3T) + (1:\Delta)])$; i) $[B_7O_{15}]^{9} \cdot ([7:(4\Delta+3T)])$; j) $[B_7O_{16}(OH)_2]^{11} \cdot ([7:(2:\Delta+T) + (3:2\Delta+T) + (2:\Delta+T)])$; k) $[B_7O_{16}]^{11} \cdot ([7:(3:2\Delta+T) + (3:2\Delta+T) + (1:\Delta)])$; i) $[B_7O_{17}]^{13} \cdot ([7:(3:\Delta+2T) + (1:\Delta) + (3:\Delta+2T)])$; m) $[B_7O_{13}(OH)]^{6} \cdot ([7:(5\Delta+2T)])$ in **1** (This work). n) $[B_7O_{13}(OH)]^{6} \cdot ([7:(5\Delta+2T)])$ in **2** (This work).

Figure S4. View of compositions of channel E (a), F (b) and G (c).

Figure S5. The metal ions positions in the inorganic framework in 2.

Figure S6. View of a) *FBB*; b) 2D ABO monolayer; c) 3D ABO porous layer; d) The intercommunicated channel system; e,f,g) Three types of 14-MR channels in **3**.

Figure S7. a) The $[Al_2B_8O_{20}(OH)_2]^{12}$ dimeric clusters in 4; b) Top view of 3D porous layer showing interlaced 9-MR windows in 4; (c) Side view of 3D porous layer; d)The intercommunicated channel system of 4 (A, B and C); e) The three types of 6-MR windows along the [010], [110] and [1-10] directions, respectively.

Figure S8. The TG curves of 1 and 2, respectively.

Figure S9. IR spectra of 1 and 2, respectively.

As shown in Fig. S9, for 1, the bands around 3400 cm⁻¹ are the characteristic peaks of the asymmetric stretching vibrations of O-H, N-H and C-H bonds. The bands appear at 1662-1607 cm⁻¹ belong to the bending vibrations of O-H, N-H and C-H bonds. The absorption peaks from 1483-1336 cm⁻¹ are attributed to the asymmetrical stretching vibrations of BO₃ triangles, while the peaks ranging from 1148-985 cm⁻¹ are the asymmetrical stretching peaks of BO₄ tetrahedrons. For **2**, the absorption peaks occurring from 3452-3172 cm⁻¹ are the asymmetric stretching vibrations of O-H bonds. The peak at 1637 cm⁻¹ and 1465 are the characteristic peaks of C-O bonds, which confirm the existence of CO_3^{2-} .^[1-2] The peaks appear in the range of 1465-1210 cm⁻¹ and 1058-942 cm⁻¹ are the asymmetric stretching vibrations of BO₃ and BO₄, respectively. The bands in the region of 740-900 cm⁻¹ are the Al-O stretching vibrations of tetrahedral AlO₄ groups.

[1] Z. H. Cheng, A. Yasukawa, K. Kandori and T. Ishikawa. Langmuir., 1998, 14, 6681-6686.

[2] J. A. Toledo-Antonio, S. Capula, M. Antonia Corte's-Ja'come, C. Angeles-Cha'vez, E. Lo'pez-Salinas, G. Ferrat, J. Navarrete and J. Escobar. J. Phys. Chem. C. 2007, 111, 10799-10805.