Electronic Supplementary Material (ESI)

Table of Contents

Sl. No.	Contents	Figure/Table
		No.
1.	Experimental section: Materials and methods	
2.	Calculation of Limit of Detection (LOD) and Quantum yield	
3.	Common solution preparation for UV-Vis and fluorescence	
	measurements	
4.	Cell line culture and cell imaging study	
5.	¹ H NMR spectrum of L in DMSO- d_6 .	Fig. S1
6.	13 C NMR spectrum of L in DMSO-d ₆ .	Fig. S2
7.	ESI- MS spectrum of L.	Fig. S3
8.	FT-IR Spectrum of L.	Fig. S4
9.	FT-IR spectrum of [Zn(L')OAc] complex.	Fig. S5
10.	ESI-MS spectrum of [Zn(L')OAc] complex.	Fig. S6
11.	Crystal data and refinement parameters for ligand, L, [Cu(L")Cl]	Table S1
	and $[Cu(L'')ClO_4]$	
12.	Some important bond length and bond angles of L	Table S2
13.	Various supramolecular interaction in L	Fig. S7
14.	Selected bond length and bond angles of [Cu(L")Cl] complex	Table S3
15.	Selected bond length and bond angles of [Cu(L")(ClO ₄] complex	Table S4
16.	Solid state emission spectrum of the ligand, L and L-Zn ²⁺ complex	Fig. S8
	(λ_{ex} 400 nm, excitation slit 15 nm and emission slit 5 nm).	
17.	Absorbance spectral change of ligand, L on incremental addition of	Fig. S9
	Zn^{2+} ion in 9:1 (v/v) EtOH/H ₂ O (HEPES buffer, pH 7.4).	
18.	Fluorescence spectra of ligand, L in presence of various cations in	Fig. S10
	9:1 (v/v) EtOH/H ₂ O (HEPES buffer, pH 7.4), $\lambda_{ex.}$ 400 nm.	
19.	Job's plot for binding stoichiometry determination in L with Zn^{2+} .	Fig. S11

20.	¹ H NMR titration experiment in L with Zn^{2+} addition in DMSO-d ₆ .	Fig. S12
21.	Benesi-Hildebrand plot determining the binding constant of L with	Fig. S13
	Zn^{2+} .	
22.	LOD determination for Zn^{2+} ion.	Fig. S14
23.	Some reports of coumarin derivative to Zn ²⁺ ion sensitivity	Table S5
24.	pH dependency on Zn^{2+} ion sensitivity.	Fig. S15
25.	Interference study on Zn^{2+} ion sensitivity (M= different metal ions	Fig. S16
	present in 3 eqv.)	
26.	(a) Fluorescence spectra of ligand, L in absence and presence of	Fig. S17
	various metal cations in 9:1 (v/v) EtOH/H ₂ O (HEPES buffer, pH 7.4	
	(b) vial image in normal light under UV light, 365 nm.	
27.	LOD determination for Cu^{2+} ion.	Fig. S18
28.	Fluorescence spectra of in-situ generated [Zn(L')OAc] complex on	Fig. S19
	incremental addition of Cu^{2+} ion in 9:1 (v/v) EtOH/H ₂ O (HEPES	
	buffer, pH 7.4), $\lambda_{ex.}$ 400 nm.	
29.	X- Band EPR spectra (a) gradual addition of [Zn(L')OAc] complex	Fig. S20
	to $CuCl_2$ solution in CH_3CN (b) isolated $[Cu(L'')Cl]$ complex in	
	CH ₃ CN.	
30.	(a) Absorbance spectra of ligand, L in absence and presence of	Fig. S21
	various metal cations in 9:1 (v/v) EtOH/H ₂ O (HEPES buffer, pH	
	7.4; inset: zooming image at higher wavelength. (b) vial image in	
	normal light.	
31.	(a) Absorbance spectra of ligand, L in absence and presence of	Fig. S22
	various metal cations in 9:1 (v/v) EtOH/H ₂ O (HEPES buffer, pH	
	7.4; inset: zooming image at higher wavelength. (b) vial image in	
	normal light.	
32.	Cyclic voltammograms of \boldsymbol{L} and \boldsymbol{L} with addition of $CuCl_2$ in	Fig. S23
	CH ₃ CN	
33.	Absorbance spectra of $L+Cu^{2+}$ and $L+Zn^{2+}+Cu^{2+}$.	Fig. S24
34.	Job's plot for binding stoichiometry determination for [Zn(L')OAc]	Fig. S25

	with Cu ²⁺ ion.	
35.	Binding constant for [Cu(L")Cl] by Benesi-Hildebrand plot.	Fig. S26
36.	DFT optimized structure of Ligand L, [Zn(L')Cl] and [Cu(L")Cl]	Fig. S27
	complex.	
37.	Some frontier molecular orbitals and energies of the ligand L	Table S6
38.	Some frontier molecular orbitals and energies of the [Zn(L')Cl]	Table S7
	complex	
39.	some frontier molecular orbitals and energies of the [Cu(L'')Cl] (α	Table S8
	spin)	
40.	Possible electronic transitions on the ligand, L from TD-DFT	Table S9
	calculation	
41.	Possible electronic transitions on [Zn(L')Cl] complex from TD-DFT	Table S10
	calculation	
42.	Possible electronic transition on [Cu(L'')Cl] complex from TD-DFT	Table S11
	calculation	
43.	Optimized coordinates for ligand, L	Table S12
44.	Optimized coordinates for [Zn(L')Cl] complex	Table S13
45.	Optimized coordinates for [Cu(L'')Cl] complex	Table S14
46.	Calibration plot for recovery of Zn ²⁺ ion.	Fig. S28
47.	Cell survivability of WI-38 cells exposed to L.	Fig. S29
48.	ESI-MS spectrum of [Cu(L")Cl] complex.	Fig. S30
49.	ESI-MS spectrum of $[Co(L'')(NO_3)]$ complex.	Fig. S31
50.	ESI-MS spectrum of [Ni(L'')(Cl)] complex.	Fig. S32
51.	ESI-MS spectrum of $[Fe(\mathbf{L''})(Cl)_2]$ complex.	Fig. S33
52.	References	

Experimental section

Materials and methods

All the reagents of analytical grade were collected from the commercial suppliers and used without further purification. 2-benzoyl pyridine and o-Phenylenediamine were obtained from Sigma-Aldrich and used as received.N¹-(phenyl(pyridin-2-yl)methyl)benzene-1,2-diamine and 7hydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde were synthesized by following reported procedure.^[1,2] The other inorganic salts and organic chemicals were bought from TCI chemicals and Merck. For spectroscopic measurement solvents with spectroscopic grade were used. Before using the solvents for spectroscopic studies these were dried by standard procedures.^[3]Milli-Q water (Millipore) was used for preparation of aqueous solutions of metal salts. Perkin-Elmer (2400 Series-II, Perkin Elmer, USA) CHN analyzerwere used for elemental analysis purpose. The spectra were recorded by Lambda 25 spectrophotometer: UV-Vis; LS55: fluorescence and LX-1FTIR spectrophotometer: FT-IR spectra (KBr disk, 4000-400 cm⁻¹) on Perkin Elmer instruments. ¹H and ¹³C NMR spectra were taken by Bruker 500 MHz FT-NMR spectrometer (TMS, internal standard). ESI-MS spectra were obtained from HRMS spectrometer (model, XEVO-G2QTOF#YCA351). The X-band EPR spectra were taken by a Magnettech GmbH MiniScope MS400 spectrometer where the microwave frequency was measured with an FC400 frequency counter. The electro analytical instrument, BASi Epsilon-EC for cyclic voltammetric experiments in CH₃CN solutions containing 0.2 M tetrabutylammonium hexafluorophosphate as a supporting electrolyte was used. For the electrochemical measurements the BASi platinum working electrode, platinum auxiliary electrode, Ag/AgCl reference electrode were used. The redox potential data reported were referenced to Fc^+/Fc (ferrocenium/ferrocene) couple.

Calculation of Limit of Detection (LOD) and Quantum yield

The LOD (limit of detection) was calculated from the fluorescence titration experiment acquired by gradual addition of Zn^{2+} ion to the ligand (**L**) solution (for Zn^{2+}) and addition of Cu^{2+} ion to the $[Zn(L')]^+$ complex solution (for Cu^{2+}). The standard deviation was determined from the emission intensity of the free ligand (for Zn^{2+}) and $[Zn(L')]^+$ (for Cu^{2+}) with varying the concentration. The limit of detection for Zn^{2+} and Cu^{2+} were determined by following the equation: $LOD = 3 \sigma/m$ where σ is standard deviation; m is the slope of the curve acquired by fluorescence titration experiment by gradual addition of selective metal ions.

Fluorescence quantum yields (Φ) were obtained by using the equation:

 $\Phi_{sample} = (OD_{std.} \times A_{sample}) / (OD_{sample} \times A_{std.}) \times \Phi_{std.}$

Where, A_{sample} and A_{std} represent the areas under the fluorescence spectral curves for sample and standard respectively. OD_{sample} and OD_{std} are the optical densities of the sample and standard respectively at the excitation wavelength.^[4] In this work, acidic quinine sulfate was taken as the standard with known quantum yield, $\Phi_{std.} = 0.54$ for the quantum yield calculation of ligand L and $[Zn(L')]^+$ complex.

Common solution preparation for UV-Vis and fluorescence measurements

The 1.0×10^{-3} M stock solution of ligand L was prepared in THF. All the required metal cation solution of 1.0×10^{-3} M was arranged in deionized water. 50 μ M, L solution was prepared in 9:1 (v/v) EtOH/H₂O (HEPES buffer, pH 7.4). The sensitivity and selectivity and all the UV-Vis as well as fluorescence measurements towards metal cations were checked by taking the above stock solution and to this solution 1.0 equivalent metal salt used. Titration of the resulting complex, $[Zn(L')]^+$ of 50 μ M was carried out by gradual addition of Cu²⁺ ion (0-52 μ M). The

absorption and emission path length of the cell used were 1 cm.Fluorescence experiments were carried out using a 10 nm \times 5 nm slit width.

Cell line culture and cell imaging study

Hep G2 (Human liver cancer) and WI-38 (human lung fibroblast) cells were acquired from NCCS (National Center for Cell Science) Pune, India. The cells were grown in DMEM with 10% FBS (Fetal Bovine Serum), penicillin/streptomycin (100 units/ml) and 5% CO₂. The measurements were carried out at a cell density permitting exponential growth and at 37°C. The Hep G2 cells were grown in coverslips for 24 h. The ligand solution was prepared by dissolving it in ethanol/water with at a ratio of 1:9 (v/v). Then the cells were either mock-treated or treated with 5 μ M of ligand (L) and 10 μ M Zn²⁺ salt in the presence or absence of 10 μ M of Cu²⁺ and incubated for 24 h at 37°C.^[5] The cells were washed with 1×PBS. Then fluorescence microscope images are taken by mounting this on a glass slide and observed under Leica fluorescence microscope.

Cell survivability of the ligand, **L** was studied in WI-38 cell as reported ealier.^[6] In briefly, cell viability of WI-38 cells after exposure to various concentrations of ligand was judged by MTT assay measurement. The cells were seeded in 96-well plates at 1×10^4 cells per well and exposed to ligand, **L** at varying concentration of 0 µM, 20 µM, 40 µM, 60 µM, 80 µM, 100 µM for 24 h. After incubation cells were washed with 1×PBS in twice and incubated with MTT solution (450 µg/ml) for 3-4 h at 37°C. The above resulting formazan crystals were dissolved in an MTT solubilization buffer and the absorbance was measured at 570 nm on a spectrophotometer (BioTek) and the value was compared with control cells.

Fig. S1 ¹H NMR spectrum of **L** in DMSO- d_6 .

Fig. S2 13 C NMR spectrum of **L** in DMSO-d₆.

Fig. S3 ESI- MS spectrum of L.

Fig. S4 FT-IR Spectrum of L.

Fig. S5 FT-IR spectrum of [Zn(L')OAc] complex.

Fig. S6 ESI-MS spectrum of [Zn(L')OAc] complex.

	L	[Cu(L")Cl]	$[Cu(L'')ClO_4]$
Formula	$C_{29}H_{21}N_3O_3$	$C_{33}H_{28}C_{13}Cu_2N_3O_4$	$C_{29}H_{20}ClCuN_3O_7$
fw	459.49	764.03	621.47
Crystal System	monoclinic	monoclinic	monoclinic
Space group	P 21/c	C 2/c	P 21/n
a (Å)	9.5747(9)	27.634(3)	11.799(2)
b (Å)	16.6202(15)	9.5387(9)	15.054(2)
c (Å)	14.3006(13)	27.062(3)	14.475(2)
α/\circ	90	90	90
β/°	90.226(3)	114.715(3)	90.113(5)
$\gamma/^{\circ}$	90	90	90
$V(Å)^3$	2275.7(4)	6479.9(11)	2571.2(7)
Ζ	4	8	4
$Dc/g cm^{-3}$	1.341	1.566	1.605
μ/mm^{-1}	0.088	1.602	1.010
λ(Å)	0.71073	0.71073	0.71073
data[$I > 2\sigma$ (I)]/params	5033/318	5703/407	4505/ 371
GOF ^c	1.078	1.054	1.080
$ \begin{array}{c} \text{final} & R \\ \text{indices} & [I \\ > 2\sigma(I)]^{a,b} \end{array} $	R1 = 0.0744 wR2 = 0.1458	R1 = 0.0766 wR2 = 0.2502	R1 = 0.1151 wR2 = 0.2463

Table S1 Crystal data and refinement parameters for ligand, L, [Cu(L'')Cl] and $[Cu(L'')ClO_4]$

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; \quad {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}; \quad w = [\sigma^{2}(F_{o})^{2} + (0.1003P)^{2} + 4.9693P]^{-1} (F_{o}^{2} + 2F_{c}^{2}) / 3; \quad Goodness-of-fit$

Table S2 Some important bond length and bond angles of \boldsymbol{L}

Bond	Length/Angle	Bond	Angle (°)
	(Å/°)		
O(1) - C(1)	1.353(3)	C(10) - N(2) - C(18)	125.9(2)
N(1) -C(10)	1.317(4)	O(1) - C(1) - C(2)	121.7(3)
N(2) - C(18)	1.472(4)	C(1) - C(2) - C(3)	120.7(3)
C(1) - C(9)	1.391(4)	C(1) - C(9) - C(8)	117.7(3)
C(18) - C(23)	1.527(4)	N(1) - C(10) - N(2)	113.0(2)
C(24) - C(29)	1.364(4)	N(1) - C(12) - C(13)	129.7(3)
N(4) - C(26)	1.342(5)	C(18) - C(23) - C(30)	120.7(3)
C(1) - C(2)	1.389(4)	N(4) - C(24) - C(29)	121.6(3)
N(2) - C(17)	1.389(3)	C(1) - O(1) - H(1)	109
C(18) - H(18)	0.98	N(2) - C(18) - H(18)	106
O(1) - H(1)	0.82	C(10) - N(1) - C(12)	104.9(2)
N(1) - C(12)	1.403(4)	O(1) - C(1) - C(9)	118.3(3)
N(4) - C(24)	1.338(4)	C(1) - C(9) - C(10)	122.1(3)
C(9) > C(10)	1.478(4)	N(1) - C(10) - C(9)	124.3(3)
C(18) - C(24)	1.516(4)	N(1) - C(12) - C(17)	109.8(2)
N(2) - C(10)	1.371(3)	N(2) - C(17) - C(12)	105.8(2)
C(20) - C(19) - C(30)	120.5(3)	N(2) - C(18) - C(23)	111.3(2)
C(18) - C(24) - C(29)	121.5(3)	C(1) - C(2) - H(2)	120
C(10) - N(2) - C(17)	106.5(2)	C(24) - N(4) - C(26)	117.4(3)

N(2) - C(10) - C(9)	122.7(2)	N(2) - C(17) - C(16)	132.3(3)
N(2) - C(18) - C(24)	110.4(2)	C(18) - C(23) - C(22)	120.7(3)
N(4) - C(24) - C(18)	116.9(3)	N(4) - C(26) - C(27)	124.6(4)
C(24) - C(18) - H(18)	106	N(4) - C(26) - H(26)	118
C(24) - C(29) - H(29)	121		

Fig. S7 (a) spacefill view of supramolecular aggregated ligand, L along crystallographic axis 'c'
(b) different supramolecular interactions presents in L (c) supramolecular assembly of L along
'c' crystallographic axis showing 'bee' like molecular arrangement.

Bond	Length/Angle	Bond	Angle (°)
	(Å/°)		
Cu(1) - Cl(1)	3.155(3)	Cl(2) - Cu(1) - N(1)	94.8(2)
Cu(1) - N(2)	1.954(7)	O(2) - Cu(1) - N(1)	97.2(2)
O(2) - C(1)	1.299(10)	N(1) - Cu(1) - N(2)	81.9(2)
N(1) - C(25)	1.356(9)	C(11) - N(3) - C(12)	122.9(6)
N(3) - C(11)	1.282(10)	N(3) - C(12) - C(17)	116.4(6)
C(10) - C(11)	1.433(10)	N(2) - C(17) - C(12)	112.6(6)
C(18) > C(25)	1.476(12)	N(2) - C(18) - C(19)	126.8(8)
Cu(1) - Cl(2)	2.556(7)	C(18) - C(19) - C(20)	118.7(7)
Cu(1) - N(3)	1.931(6)	N(1) - C(25) - C(26)	120.8(8)
N(1) - C(29)	1.347(10)	C(1) - C(2) - H(2)	119
N(3) - C(12)	1.424(9)	N(3) - C(11) - H(11)	118
C(12) - C(13)	1.386(11)	C(1) - C(10) - C(9)	117.1(7)
Cu(1) - O(2)	1.879(5)	N(3) - C(11) - C(10)	124.9(8)
Cu(2) - Cl(1)	2.108(4)	N(2) - C(17) - C(16)	126.9(7)
N(2) - C(17)	1.447(11)	N(2) - C(18) - C(25)	113.6(7)
C(1) - C(2)	1.417(10)	C(18) - C(19) - C(24)	121.6(7)
C(12) - C(17)	1.417(10)	C(18) - C(25) - C(26)	123.7(7)
C(11) - H(11)	0.93	C(10) - C(11) - H(11)	118
Cu(1) - N(1)	1.979(6)	C(1) - C(10) - C(11)	124.8(7)
N(2) - C(18)	1.293(11)	N(3) - C(12) - C(13)	124.8(6)
C(1) - C(10)	1.421(11)	C(12) - C(13) - C(14)	120.0(8)
C(18) > C(19)	1.491(11)	C(12) - C(17) - C(16)	120.5(8)
C(25) - C(26)	1.366(13)	N(1) - C(25) - C(18)	115.5(7)
N(1) - C(29) - C(28)	122.1(7)	C(25) - C(26) - C(27)	119.3(8)
C(12) - C(13) - H(13)	120	C(25) - C(26) - H(26)	120
N(1) - C(29) - H(29)	119		

Table S3 Selected bond length and bond angles of [Cu(L'')Cl] complex

Bond	Length/Angle (Å/°)	Bond	Length/Angle (Å/°)
Cu(1) - O(1)	1.855(6)	O(1) - Cu(1) - O(5)	94.0(4)
Cu(1) - N(3)	1.915(7)	O(1) - Cu(1) - N(3)	97.2(3)
N(2) - C(18)	1.322(12)	N(2) - Cu(1) - N(3)	84.0(3)
C(18) > C(19)	1.472(15)	Cu(1) - O(5) - Cl(1)	142.3(8)
O(1) - C(1)	1.309(11)	C(7) - N(3) - C(12)	124.0(8)
N(1) - C(19)	1.340(13)	N(3) - C(7) - C(6)	126.2(8)
N(3) - C(7)	1.304(12)	N(3) - C(12) - C(17)	116.4(9)
C(18) > C(24)	1.465(15)	N(2) - C(17) - C(12)	112.2(9)
Cu(1) - N(1)	1.977(7)	N(2) - C(18) - C(19)	111.8(9)
N(1) - C(23)	1.314(13)	N(1) - C(19) - C(18)	117.1(9)
N(3) - C(12)	1.396(13)	N(1) - C(23) - C(22)	120.3(9)
Cu(1) - N(2)	1.925(8)	O(1) - Cu(1) - N(1)	96.2(3)
N(2) - C(17)	1.417(13)	N(1) - Cu(1) - N(2)	82.5(3)
Cu(1) - O(1) - C(1)	126.6(6)	Cu(1) - N(1) - C(19)	111.0(6)
Cu(1) - N(2) - C(17)	114.3(6)	Cu(1) - N(3) - C(7)	123.0(6)
O(1) - C(1) - C(2)	118.7(8)	N(2) - C(17) - C(16)	126.7(9)
N(2) - C(18) - C(24)	127.6(9)	N(1) - C(19) - C(20)	119.6(9)
N(3) - C(7) - H(7)	117	N(1) - C(23) - H(23)	120
O(1) - Cu(1) - N(2)	178.1(3)	N(1) - Cu(1) - N(3)	165.9(3)
Cu(1) - N(1) - C(23)	126.4(7)	Cu(1) - N(2) - C(18)	116.2(7)
Cu(1) - N(3) - C(12)	113.1(6)	O(1) - C(1) - C(6)	122.1(9)

Table S4 Selected bond length and bond angles of $[Cu(L'')(ClO_4]$ complex

C(18) - C(19) - C(20)	123.3(9)	C(18) - C(24) - C(29)	120.8(10)

Fig. S8 Solid state emission spectrum of the ligand, L and L-Zn²⁺complex (λ_{ex} 400 nm, excitation slit 15 nm and emission slit 5 nm).

Fig. S9 Absorbance spectral change of ligand, **L** on incremental addition of Zn^{2+} ion in 9:1 (v/v) EtOH/H₂O (HEPES buffer, pH 7.4).

Fig. S10 Fluorescence spectra of ligand, L in presence of various cations in 9:1 (v/v) EtOH/H₂O (HEPES buffer, pH 7.4), $\lambda_{ex.}$ 400 nm.

Fig. S11 Job's plot for binding stoichiometry determination in L with Zn^{2+} .

Fig. S12 ¹H NMR titration experiment in L with Zn^{2+} addition in DMSO-d₆.

Fig. S13 Benesi-Hildebrand plot determining the binding constant of L with Zn^{2+} .

Fig. S14 LOD determination for Zn^{2+} ion.

Table S5 Some repo	orts of coumarin	derivative to	o ion	sensitivity
--------------------	------------------	---------------	-------	-------------

Sl.	Ligand	Selectivity	Solvent	Solid	Live cell	Ref.
No.		(LOD)		state	imaging	
				sensing		
				Study		
1.		Zn^{2+} (72	DMSO/H ₂ O	No	Yes	[7]
		nM) and	(v/v =			
	N	AcO ⁻ (94	3:7)pH, 7.2			
	HN S	nM)				

2.		Zn ²⁺ (100 nM)	THF	Yes	No	[8]
	HOLOCO					
3.		CN ⁻ (169	DMSO/H ₂ O	Yes	No	[9]
		nM) And Zn^{2+}	3:7, v/v			
		(61 nM)				
4.		Zn ²⁺	MeOH/H ₂ O	No	Yes	[10]
		(68 nM) and	(v/v, 2:1)			
	HO	АТР (0.7 иМ)				
	Lo ji					
5.		Zn ²⁺	MeOH/H ₂ O	No	Yes	[11]
	S N	(78 nM) and	(v/v, 3:1)			
	HO 0	ATP (6.6				
6.		Zn ²⁺	9:1 v/v	Yes	Yes	[12]
		(11 nM)	CH_3CN :			
			1120			

7.		Zn ²⁺ (-)	CH ₃ CN/H ₂ O mixture (1:1, v/v)	No	No	[13]
8.		Zn ²⁺ (100 nM)	EPES buffer of PH 7.4	No	No	[14]
9.		Zn ²⁺ (35 nM)	CH ₃ CN/H ₂ O (95:5, v/v)	No	Yes	[15]
10.		Zn ²⁺ (19 nM) and Cu ²⁺ (1.87 nM)	CH ₃ CN : H ₂ O (1 : 1, v/v, pH, 7.2)	No	No	[16]
11.	H_2N	Zn^{2+} (26 nM) and ClO^{-} (2 μ M)	10 mM HEPES buffer (pH 7.4)	No	No	[17]
12.		Zn ²⁺ (5.8 nM) and Cu ²⁺ (20 nM)	9:1, v/v EtOH/H ₂ O	Yes	Yes	This work

Fig. S15 pH dependency on Zn^{2+} ion sensitivity.

Fig. S16 Interference study on Zn^{2+} ion sensitivity (M= different metal ions present in 3 eqv.)

Fig. S17 (a) Fluorescence spectra of ligand, L in absence and presence of various metal cations in 9:1 (v/v) EtOH/H₂O (HEPES buffer, pH 7.4 (b) vial image in normal light under UV light, 365 nm.

Fig. S18 LOD determination for Cu^{2+} ion.

Fig. S19 Fluorescence spectra of in-situ generated [Zn(L')OAc] complex on incremental addition of Cu^{2+} ion in 9:1 (v/v) EtOH/H₂O (HEPES buffer, pH 7.4), $\lambda_{ex.}$ 400 nm.

Fig. S20 X- Band EPR spectra (a) gradual addition of [Zn(L')OAc] complex to CuCl₂ solution in CH₃CN (b) isolated [Cu(L'')Cl] complex in CH₃CN.

Fig. S21 (a) Absorbance spectra of [Zn(L')OAc] complex in absence and presence of various metal cations in 9:1 (v/v) EtOH/H₂O (HEPES buffer, pH 7.4 (b) vial image in normal light.

(b) Fig. S22 (a) Absorbance spectra of ligand, L in absence and presence of various metal cations in 9:1 (v/v) EtOH/H₂O (HEPES buffer, pH 7.4; inset: zooming image at higher wavelength. (b) vial

image in normal light.

Fig. S23 Cyclic voltammograms (a) L and L with addition of $CuCl_2$ in CH_3CN in inert atmosphere (b) same solution (L and $CuCl_2$ in CH_3CN) kept in air for 10 minutes then pursed with N₂ gas at 296 K, (Conditions: 0.2 M [N(*n*-Bu)₄]PF₆ supporting electrolyte; scan rate, 100 m V s⁻¹; platinum working electrode).

Fig. S24 Absorbance spectra of $L+Cu^{2+}$ and $L+Zn^{2+}+Cu^{2+}$.

Fig. S25 Job's plot for binding stoichiometry determination for [Zn(L')OAc] with Cu^{2+} ion.

Fig. S26 binding constant for [Cu(L'')Cl] by Benesi-Hildebrand plot.

Fig. S27 DFT optimized structure of LigandL, [Zn(L')(Cl)] and [Cu(L'')Cl] complex.

Table S7 some frontier molecular orbitals and energies of the [Zn(L')Cl] complex

LUMO	LUMO+1	LUMO+2	LUMO+3	LUMO+4
-2.15 eV	-1.99 eV	-1.68 eV	-1.44 eV	-1.07 eV

Table S8 some frontier molecular orbitals and energies of the [Cu(L'')Cl] (α spin)

LUMO	LUMO+1	LUMO+2	LUMO+3	LUMO+4
-3.06 eV	-2.3 eV	-1.76 eV	-1.69 eV	-1.04 eV
НОМО	HOMO-1	HOMO-2	HOMO-3	HOMO-4
-5.41 eV	-5.44 eV	-5.55 eV	-5.98 eV	-6.46 eV

Table S9 Possible electronic transitions on the ligand, L from TD-DFT calculation

Excitation energy (eV)	Wavelength Exp. (nm)	Wavelength Thro. (nm)	Oscillation Frequency (f)	Key Transitions	Nature of transition
3.8211 eV	414	324.47	f=0.0087	HOMO-1→LUMO, 47 %	ILCT
4.0784 eV	315	304.01	f=0.3682	HOMO-2→LUMO, 45 %	ILCT

Excitation	Wavelength	Wavelength	Oscillation	Key	Nature
energy	Exp. (nm)	Thro. (nm)	Frequency	Transitions	of
(eV)			(f)		transition
3.1142 eV	414	398.12	f=0.2866	HOMO→LUMO,	ILCT
				43 %	
3.6763 eV	345	337.26	f=0.6726	HOMO-1→LUMO,	ILCT
				38 %	$(Cl_p \rightarrow L)$

Table S10 Possible electronic transitions on [Zn(L')Cl] complex from TD-DFT calculation

Table S11 Possible electronic transition on [Cu(L'')Cl] complex from TD-DFT calculation

Excitation energy (eV)	Wavelength Exp. (nm)	Wavelength Thro. (nm)	Oscillation Frequency (f)	Key Transitions	Nature of transition
2.3342 eV	540	531.17	f=0.0260	HOMO→LUMO	ILCT
				(α), 52 %	$(Cl_p \rightarrow L)$
3.6598 eV	345	338.77	f=0.1501	HOMO-	ILCT
				5→LUMO+1 (α),	
				50 %	

Table S12 Optimized coordinates for ligand, L

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Z	
1	8	5.919369	7.872931	8.041695	
2	1	5.833926	8.573460	8.716432	
3	8	4.379652	3.586147	6.738146	
4	7	6.961271	5.373320	5.655676	
5	7	5.171905	6.655104	5.087898	
6	8	3.758761	1.525175	6.013425	
7	6	5.734815	5.932802	6.043439	
8	6	5.120814	5.742444	7.375384	
9	6	4.384764	4.590535	7.689995	
10	6	5.161365	6.760880	8.341768	
11	6	7.186264	5.798379	4.339134	
12	6	6.055215	6.587212	4.002090	
13	6	8.241316	3.231846	5.818245	
14	6	7.828123	4.537721	6.512925	
15	1	7.185014	4.256406	7.354498	

16	6	3.681122	4.430561	8.906247
17	6	8.969542	5.358718	7.101463
18	6	2.931678	3.201472	9.120302
19	6	4.475745	6.635809	9.564251
20	1	4.519648	7.439984	10.292634
21	6	3.742791	5.489124	9.835203
22	1	3.213534	5.408175	10.777141
23	7	9.862926	5.899500	6.240996
24	6	5.941471	7.168107	2.732064
25	1	5.072108	7.767390	2.486445
26	6	8.226700	5.580592	3.426262
27	1	9.103841	5.009744	3.695494
28	6	9.562891	2.761601	5.823370
29	1	10.351737	3.358394	6.263833
30	6	3.670452	2.354887	6.916435
31	6	7.238873	2.441462	5.227077
32	1	6.210818	2.785050	5.222009
33	6	6.969045	6.946387	1.819054
34	1	6.911161	7.380909	0.826043
35	6	8.095120	6.163760	2.166255
36	1	8.882065	6.015525	1.433270
37	6	2.938865	2.233897	8.158097
38	1	2.392081	1.308202	8.285079
39	6	9.878565	1.527201	5.240370
40	1	10.907417	1.180266	5.246529
41	6	9.066257	5.558900	8.485835
42	1	8.336081	5.111531	9.152018
43	6	2.154641	3.009024	10.397605
44	1	1.648046	2.041255	10.403801
45	1	1.395039	3.790815	10.521279
46	1	2.812695	3.053439	11.274364
47	6	7.555862	1.210240	4.648303
48	1	6.766035	0.614178	4.203121
49	6	11.023750	6.910043	8.101162
50	1	11.843202	7.527168	8.452255
51	6	8.878205	0.748107	4.652077
52	1	9.124416	-0.208551	4.201750
53	6	10.108860	6.341627	8.992516
54	1	10.202705	6.505993	10.061060
55	6	10.860378	6.662130	6.734222
56	1	11.545058	7.079421	6.003359

Table S13	Optimized co	oordinates for	[Zn(L')Cl]	complex
-----------	--------------	----------------	------------	---------

Center	Atomic	Coordinates (Angstroms)		
Number	Number	Х	Y	Z
1	8	14.488700	3.145237	13.809071
2	7	14.333733	1.827862	11.263424
3	7	16.693662	0.609007	11.596967
4	1	17.113682	1.505973	11.345774
5	6	17.978751	0.566161	13.667558
6	6	13.557499	2.851793	10.974551
7	1	13.170731	2.968854	9.960496
8	6	13.163360	3.891074	11.899367
9	6	18.843746	-0.777808	11.676699
10	6	15.848805	0.086720	10.544568
11	6	12.264024	4.893014	11.424450
12	6	14.632878	0.796671	10.324574
13	6	13.636413	3.994123	13.268204
14	6	17.604958	-0.242155	12.402484
15	1	16.996101	-1.091893	12.745060
16	6	11.802312	5.965494	12.215071
17	7	17.052308	1.461284	14.109186
18	6	16.156918	-1.034711	9.757535
19	1	17.081629	-1.576899	9.919861
20	6	12.282696	6.034105	13.560315
21	1	11.945377	6.844064	14.201038
22	6	13.162370	5.095818	14.064946
23	1	13.522263	5.148397	15.087636
24	6	19.168524	-2.146881	11.763731
25	1	18.523490	-2.816099	12.330716
26	6	19.685773	0.077088	10.933093
27	1	19.456099	1.138626	10.854393
28	6	15.272020	-1.448944	8.744549
29	1	15.513600	-2.321480	8.143336
30	6	10.877174	6.921588	11.631233
31	6	13.759664	0.379673	9.298395
32	1	12.812008	0.889967	9.150406
33	6	10.932235	5.689906	9.474625
34	6	19.179458	0.374465	14.374489
35	1	19.911872	-0.339891	14.017030
36	6	10.474636	6.772873	10.322828
37	1	9.785183	7.468194	9.857531
38	6	21.142350	-1.799260	10.374177
39	1	22.022359	-2.190545	9.869812

40	6	14.082249	-0.735149	8.507368
41	1	13.397964	-1.057755	7.727266
42	6	20.824794	-0.428941	10.282812
43	1	21.461530	0.238511	9.707186
44	6	20.311373	-2.657686	11.118259
45	1	20.546885	-3.716504	11.191489
46	6	18.450628	2.049151	15.980476
47	1	18.600455	2.642810	16.876222
48	6	19.412636	1.119191	15.544900
49	1	20.332570	0.976547	16.105477
50	6	17.274489	2.193348	15.229012
51	1	16.484645	2.885888	15.502621
52	8	10.641981	5.465030	8.292671
53	8	11.842021	4.763554	10.105614
54	6	10.357422	8.074585	12.461679
55	1	9.817554	7.711694	13.346477
56	1	11.180003	8.708822	12.818449
57	1	9.674061	8.699696	11.879457
58	30	15.127998	1.365323	13.162557
59	17	14.356592	-0.666807	14.027198

 Table S14 Optimized coordinates for [Cu(L'')Cl] complex

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Ζ	
1	29	11.770658	4.214216	13.010733	
2	8	7.253934	1.528512	11.473454	
3	8	11.903742	2.826455	11.638165	
4	8	5.041835	0.956576	11.486971	
5	7	9.905570	3.787892	13.471032	
6	7	13.751763	4.460161	13.260979	
7	7	11.763850	5.115884	14.838742	
8	6	9.132619	2.987793	12.764727	
9	1	8.089853	2.852212	13.046557	
10	6	9.460032	4.500048	14.621836	
11	6	9.536998	2.227817	11.613385	
12	6	10.457119	5.215647	15.362242	
13	6	10.893865	2.169840	11.105148	
14	6	14.045453	5.309218	14.294269	
15	6	8.536884	1.452209	10.947686	
16	6	13.043289	6.893480	16.051583	
17	6	8.798457	0.647194	9.822686	
18	6	6.130004	0.809777	10.917191	

19	6	12.884347	5.727182	15.127948
20	6	8.117657	4.541445	15.056708
21	1	7.337666	4.038497	14.494832
22	6	8.755449	5.915220	16.969097
23	1	8.483275	6.450220	17.874688
24	6	10.088719	5.906131	16.540930
25	1	10.838035	6.431682	17.118456
26	6	10.148575	0.613379	9.347853
27	1	10.387184	0.005173	8.479955
28	6	11.153604	1.334410	9.961427
29	1	12.175107	1.307937	9.596166
30	6	7.702103	-0.088916	9.215957
31	6	14.709861	4.031369	12.417373
32	1	14.375659	3.378047	11.617923
33	6	6.437249	0.003196	9.752491
34	1	5.597867	-0.532434	9.323656
35	6	13.647963	6.777059	17.320615
36	1	13.993238	5.806748	17.671670
37	6	7.768516	5.242023	16.219140
38	1	6.730358	5.263911	16.539720
39	6	12.590054	8.153812	15.595921
40	1	12.134121	8.229685	14.610499
41	6	16.049439	4.434387	12.570797
42	1	16.804782	4.077036	11.878741
43	6	15.363312	5.761566	14.490504
44	1	15.585410	6.454156	15.294233
45	6	13.785137	7.912975	18.141484
46	1	14.242977	7.818583	19.123016
47	6	16.374126	5.312887	13.620740
48	1	17.397474	5.651616	13.756401
49	6	7.953173	-0.951555	7.998886
50	1	7.031334	-1.437692	7.666508
51	1	8.693047	-1.734222	8.213738
52	1	8.343240	-0.353377	7.164583
53	6	12.736680	9.285288	16.417798
54	1	12.389321	10.253011	16.065256
55	6	13.330482	9.167938	17.691056
56	1	13.438949	10.044968	18.324466
57	17	11.481686	6.484428	12.022982

Fig. S28 Calibration plot for recovery of Zn^{2+} ion.

Fig. S29 Cell survivability of WI-38 cells exposed to L.

Fig. S30 ESI-MS spectrum of [Cu(L")Cl] complex.

Fig. S31 ESI-MS spectrum of [Co(L'')(NO₃)] complex.

Fig. S32 ESI-MS spectrum of [Ni(L'')(Cl)] complex.

Fig. S33 ESI-MS spectrum of [Fe(L'')(Cl)₂] complex.

References

- S. Chaudhuri, S. C. Patra, P. Saha, A. S. Roy, S. Maity, S. Bera, P. S. Sardar, S. Ghosh, T. Weyhermüllerc and P. Ghosh, *Dalton Trans.*, 2013, 42, 15028-15042.
- 2 K. Das, U. Panda, A. Datta, S. Roy, S. Mondal, C. Massera, T. Askun, P. Celikboyun, E. Garribba, C. Sinha, K. Anand, T. Akitsu and K. Kobayashi, *New J. Chem.*, 2015, **39**, 7309-7321.
- 3 D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, U.K., 1980.

- 4 D. Maiti, A. S. M. Islam, M. Sasmal, C. Prodhan and Mahammad Ali, *Photochem. Photobiol.Sci.*, 2018, **17**, 1213-1221.
- 5 A. Samui, K. Pal, P. Karmakar and S. K. Sahu, Mater. Sci. Eng. C, 2019, 98, 772-781.
- 6 K. Pal, S. Roy, P. K. Parida, A. Dutta, S. Bardhan, S. Das, K. Jana and P. Karmakar, *Mater. Sci. Eng.* C, 2019, **95**, 204-216.
- 7 Y. Gao, H. Liu, P. Li, Q. Liu, W. Wang and B. Zhao, *Tetrahedron Letters* 2017, 58, 2193-2198.
- 8 M. Yan, T. Li and Z. Yang, Inorg. Chem. Comm., 2011, 14, 463-465.
- 9 J.-H. Hu, Y. Suna, J. Qi, Q. Li and T.-B. Wei, Spectrochim. Acta, Part A, 2017, 175, 125-133.
- 10 C. Patra, A. K. Bhanja, A. Mahapatra, S. Mishra, K. D. Saha, C. Sinha, *RSC Adv.*, 2016, 6,76505-76513.
- 11 C. Patra, C. Sen, A.D. Mahapatra, D. Chattopadhyay, A. Mahapatra and C. Sinha, *J. Photoch. Photobio.* A, 2017, **341**, 97-107.
- 12 S. Dey, R. Purkait, C. Patra, M. Saha, S. Mondal, K. D. Saha and Chittaranjan Sinha, *New J. Chem.*, 2018, **42**, 16297-16306.
- 13 D. Sarkar, A. K. Pramanik and T. K. Mondal, J. Lumin., 2014, 146, 480-485.
- 14 J.-m. An, M.-h. Yan, Z.-y. Yang, T.-r. Li and Q.-x. Zhou, Dyes Pigm., 2013, 99, 1-5.
- 15 M. Z. Jonaghani, H. Zali-Boeini and H. Moradi, Spectrochim. Acta, Part A, 2019, 207, 16-22.
- 16 D. Sarkar, A. K. Pramanik and T. K. Mondal, RSC Adv., 2015, 5, 7647-7653.

17 M. L. Aulsebrook, B. Graham, M. R. Grace and K. L. Tuck, *Supramol. Chem.*, 2015, **27**, 798-806.