Supporting information for

A unique uranyl framework containing uranyl pentamers as

secondary building units: synthesis, structure, and spectroscopic

properties

Yugang Zhang^{a+}, Lanhua Chen^{a+}, Jingwen Guan^a, Xia Wang^a, Shuao Wang^a, and Juan Diwu^{*a}

^aState Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China E-mail: diwujuan@suda.edu.cn **Table of Contents**

- **S1** Experimental section
- S2 X-ray crystallography studies
- **S3** Characterization

S4 Tables

Table S1 The crystallographic data of compound 1

Table S2 Element analysis result ofcompound 1

 Table S3 The crystallographic data of compound 2

Table S4 Element analysis result of compound 2

S5 Figures

Fig. S1 Thermal-gravimetric analysis data of compound 1

Fig. S2 FT-IR spectrum

Fig. S3 Thermal-gravimetric analysis data of compound 2

Fig. S4 pH stability measurement results of compound 1

Fig. S5 pH stability measurement results of compound 2

S1 Experimental section

Caution ! While all uranium compounds used in these studies contained depleted uranium, standard precautions were performed for handling radioactive material, and all studies were conducted in a laboratory dedicated to studies on actinide elements.

Materials: UO₂(NO₃)₂·6H₂O, 1,2,4-Benzenetricarboxylic acid (98%, TCI), Tetrahydrofuran (AR, Adamasbeta), N,N-Dimethylformamide (AR, Adamasbeta), Teteaethylammonium (TEA) hydroxide (35 wt% solution in water, TCI), Formic acid (AR, Adamasbeta). All chemical reagents and solvents purchased from commercial suppliers and directly used as received.

Synthesis of compound 1: the mixture of $UO_2(NO_3)_2 \cdot 6H_2O$ (100.4 mg, 0.2 mmol), 1,2,4-Benzenetricarboxylic acid (63 mg, 0.3 mmol), H₂O (2 mL), THF (2 mL), and DMF (2 mL) was added into a 20 mL stainless steel PTFE vial. The vial was heated to 130 °C, maintained for 3 days, and then cooled to room temperature at a rate of 5 °C/h. Dark yellow crystals were finally obtained as a pure phase. The yield of compound 1 is about 15% based on uranium.

Synthesis of compound 2: the mixture of $UO_2(NO_3)_2 \cdot 6H_2O$ (50.2 mg, 0.1 mmol), 1,2,4-Benzenetricarboxylic acid (42 mg, 0.2 mmol), Tetraethylammonium hydroxide (100 µL), formic acid (50 µL), and H₂O (2 mL) was added into a 20 mL stainless steel PTFE vial. The vial was

heated to 160 °C, maintained for 4 days, and then cooled to room temperature at a rate of 5 °C/h. Yellow crystals were finally obtained as a pure phase. The yield of **compound 2** is about 52% based on uranium.

S2 X-ray Crystallography Studies:

Single crystal X-ray diffraction data collections of **compound 1** and **compound 2** were performed on a Bruker D8-Venture diffractometer with a Turbo X-ray Source (Mo–K α radiation, $\lambda = 0.71073$ Å) adopting the direct-drive rotating anode technique and a CMOS detector under 298 K. The data of **compound 1** and **compound 2** were collected using the program APEX3 and then processed using SAINT routine in APEX3. The structure of **compound 1** and **compound 2** were solved by direct methods and refined by the full-matrix least squares on F² using the SHELXTL.^[1]

S3 Characterizations

Instrumentations: Powder X-ray diffraction (PXRD) patterns were collected from 5° to 50° with a step of 0.02° on a Bruker D8 Advance diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å) and a Lynxeye one-dimensional detector. Elemental analysis (C, N, and H) were performed using a Vario EL CHNOS elemental analyzer. The FT-IR spectrum of **compound 1** without KBr were recorded in the range of 4000-400 cm⁻¹

on a Thermo Nicolet iS50 spectrometer. Thermogravimetric analyses were carried out on a NETZSCH STA449F3 instrument in the range of 30-900 °C under a nitrogen flow at a heating rate of 10 K/min for the dried samples of **compound 1** and **compound 2**. Luminescence spectra were collected on a Craic Technologies microspectrophotometer and accessory instrument. Second Harmonic Generation (SHG) signals were recorded on a Kurtz-Perry powder SHG test with an Nd:YAG laser (1064 nm). KH₂PO₄ was chosen as a reference substance to the signal of **compound 1**.

Hydrolytic Stability Measurements: Hydrolytic stability measurements for **compound 1** and **compound 2** were carried out by stiring the samples in aqueous solutions at various pH range from 5 to 12 for 1 day. The solid samples were then collected and dried for PXRD patterns analysis.

Table S1 The crystallographic data of compound 1

Formula	[DMPD][H ₃ O] [(CH ₃) ₂ NH ₂] ₂ [(UO ₂) ₅ O ₃ (OH)(HCOO) (C ₉ H ₃ O ₆) ₂]·(DMF) (H ₂ O)		
<i>M</i> r [g mol-1]	2174.00		
Crystal system	Monoclinic		
Space group	Сс		
a(Å)	25.3322(19)		
b(Å)	8.8310(7)		
c(Å)	25.293(3)		
α(°)	90		
β(°)	118.825(2)		
γ(°)	90		
V(Å ³)	4957.2(8)		
Z	4		
ρ_{calcd} (g cm ⁻ 3)	2.791		
M (mm ⁻¹)	16.371		
F(000)	3668		
T(K)	298		
$R_{1^{a}}, wR_{2^{b}} (I \ge 2\sigma(I))$	0.0305, 0.0706		
R_1^a , w R_2^b (all data)	0.0343, 0.0729		
${}^{a}R_{1} = \Sigma Fo - Fc / \Sigma Fo $. ${}^{b}wR_{2} = [\Sigma w (Fo^{2} - Fc^{2})^{2} / \Sigma w (Fo^{2})^{2}]^{1/2}$			

Table S1. Crystallographic data of **compound 1**.

Table S2 Element analysis result of compound 1

Name	Weight (mg)	Content (%)	Peak Area	Daily Factor	The theoretical content based on formula (%)
Compound 1	2.7710	N:2.546	2678	0.9915	2.569
		C:17.13	12918	0.9918	17.62
		H:2.526	4908	1.0587	2.478

Table S2. The element analysis result of **compound 1**

Formula	$(TEA)_2[(UO_2)_2(H_2O)(C_9H_3O_6)_2] \cdot 5(H_2$		
	O)		
<i>M</i> r [g mol-1]	1322		
Crystal system	monoclinic		
Space group	$P2_1/n$		
a(Å)	9.8823(13)		
b(Å)	15.971(2)		
c(Å)	27.569(3)		
α(°)	90		
β(°)	91.413(4)		
γ(°)	90		
V(Å ³)	4349.9(9)		
Z	4		
ρ_{calcd} (g cm ⁻ 3)	1.878		
M (mm ⁻¹)	7.505		
F(000)	2332		
T(K)	298		
R_1^a , wR_2^b (I>2 σ (I))	0.0371, 0.1434		
R_1^a , w R_2^b (all data)	0.0424, 0.1473		
${}^{a}R_{1} = \Sigma Fo - Fc / \Sigma Fo $. ${}^{b}wR_{2} = [\Sigma w (Fo^{2} - Fc^{2})^{2} / \Sigma w (Fo^{2})^{2}]^{1/2}$			

Table S3. The crystallographic data of **compound 2**

Table S4 Element ana	lysis result	of compound 2
----------------------	--------------	---------------

Name	Weight (mg)	Content (%)	Peak Area	Daily Factor	The theoretical content based on formula (%)
Compound 2	2.5730	N:2.513	1570	0.9915	2.121
		C:32.35	13124	0.9918	30.91
		H:4.670	7450	1.0587	4.546

Table S4. The element analysis result of compound 1

Fig. S1 Thermal-gravimetric analysis (TGA) data of compound 1

Fig. S1. The Thermal-gravimetric analysis curve of compound 1

Fig. S2 FT-IR spectrum

Fig. S2. FT-IR spectrum of compound 1

Fig. S3 Thermal-gravimetric analysis (TGA) data of compound 2

Fig. S3. The Thermal-gravimetric analysis curve of compound 2

Fig. S4 pH stability measurement results of compound 1

Fig. S4. The Powder X-ray diffraction (PXRD) patterns for solid samples of **compound 1** after soaking in solutions with pH ranging from 5 to 12

Fig. S5 pH stability measurement results of compound 2

Fig. S5. The powder X-ray diffraction (PXRD) patterns for solid samples of **compound 2** after soaking in solutions with pH ranging from 5 to 12.

Reference:

[1]. G. Sheldrick, P. SHELXTL, Madison, WI 1990.