SUPPORTING INFORMATION

Exfoliation of layered mixed zirconium 4-sulfophenylphosphonate phenylphosphonate

K. Kopecká ^{a,b}, K. Melánová ^{*a,c}, L. Beneš ^a, P. Knotek ^b, M. Mazur ^d, V. Zima ^c

^a Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 84, 532 10 Pardubice, Czech Republic. E-mail:

klara.melanova@upce.cz

^b Department of General and Inorganic Chemistry, Faculty of Chemical Technology,

University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic

^c Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského

nám. 2, 162 06 Prague 6, Czech Republic

^d Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic

Intercalate	formula	Weight loss, % found/calc.	
		up to 200°C	total
ZrSPhP1.8-	Zr(HO ₃ SC ₆ H ₄ PO ₃) _{1.8} (C ₆ H ₄ PO ₃) _{0.2} ·1.8NH ₂ C ₂ H ₄ OH	0/0.00	59.2/59.66
NH ₂ EtOH			
ZrSPhP1.8-	Zr(HO ₃ SC ₆ H ₄ PO ₃) _{1.8} (C ₆ H ₄ PO ₃) _{0.2} ·1.8NH ₂ C ₃ H ₇ OH	0/0.00	61.5/61.16
NH ₂ PrOH			
ZrSPhP1.8-	$Zr(HO_3SC_6H_4PO_3)_{1.8}(C_6H_4PO_3)_{0.2}$ ·1.8NH ₂ C ₄ H ₁₀ OH	0/0.00	62.0/62.54
NH ₂ BuOH			
ZrSPhP1.8-	$Zr(HO_3SC_6H_4PO_3)_{1.8}(C_6H_4PO_3)_{0.2}$ ·1.8NH ₂ C ₅ H ₁₀ OH	0/0.00	64.1/63.83
NH ₂ PeOH			
ZrSPhP1.8-	$Zr(HO_3SC_6H_4PO_3)_{1.8}(C_6H_4PO_3)_{0.2} \cdot 1.8NH_2C_6H_{12}OH$	0/0.00	64.5/65.03
NH ₂ HexOH			
ZrSPhP1.8-	$Zr(HO_3SC_6H_4PO_3)_{1.8}(C_6H_4PO_3)_{0.2} \cdot 0.9NC_6H_{15} \cdot H_2O$	2.6/2.87	57.2/57.76
Et3N			
ZrSPhP1.3-	$Zr(HO_3SC_6H_4PO_3)_{1.3}(C_6H_4PO_3)_{0.7} \cdot 1.3NH_2C_2H_4OH$	2.8/2.98	56.3/56.16
NH2EtOH	·H ₂ O		
ZrSPhP1.3-	Zr(HO ₃ SC ₆ H ₄ PO ₃) _{1.3} (C ₆ H ₄ PO ₃) _{0.7} ·1.3NH ₂ C ₃ H ₆ OH	3.0/2.89	57.2/57.44
NH2PrOH	·H ₂ O		
ZrSPhP1.3-	Zr(HO ₃ SC ₆ H ₄ PO ₃) _{1.3} (C ₆ H ₄ PO ₃) _{0.7} ·1.3NH ₂ C ₄ H ₈ OH	2.7/2.81	57.3/58.65
NH2BuOH	·H ₂ O		
ZrSPhP1.3-	Zr(HO ₃ SC ₆ H ₄ PO ₃) _{1.3} (C ₆ H ₄ PO ₃) _{0.7} ·1.3NH ₂ C ₅ H ₁₀ OH	2.5/2.73	60.2/59.80
NH2PeOH	·H ₂ O		
ZrSPhP1.3-	Zr(HO ₃ SC ₆ H ₄ PO ₃) _{1.3} (C ₆ H ₄ PO ₃) _{0.7} ·1.3NH ₂ C ₆ H ₁₂ OH	2.6/2.66	61.0/60.88
NH2HexOH	·H ₂ O		

 Table S1. Formulas and thermogravimetric data for the prepared intercalates.

Figure S1: Infrared spectrum of amino ethanol intercalated ZrSPhP1.8.

Figure S2: AFM scan and height profiles of **ZrSPhP1.8** exfoliated with amino ethanol using an ultrasound bath with frequency 37 kHz.

Figure S3. AFM scan and height profiles of **ZrSPhP1.8** exfoliated with amino ethanol using an ultrasound bath with frequency 37 kHz; detail.

Figure S4. AFM topology scans and height profiles of **ZrSPhP1.3** exfoliated with amino ethanol (a) and amino hexanol (b).

Figure S5. AFM topology scan of **ZrSPhP** treated with TBOAH. There are no detectable lamellas, just remains from collapsed foam.