Electronic Supplementary Information (ESI)

Synthesis, structure and catalytic activity of manganese (II) complexes derived from bis(imidazole)methane-based ligands

Hemanta Deka, Ankit Kumar, Soumyadip Patra, Mahendra K. Awasthi and Sanjay Kumar Singh*

Catalysis Group, Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, M.P., India

Description	Page No.
Figure S1. X-band EPR spectrum of [Mn]-1 in methanol	S3
Figure S2. X-band EPR spectrum of [Mn]-2 in methanol	S3
Figure S3. X-band EPR spectrum of [Mn]-3 in methanol	S4
Figure S4. ESI-MS analysis of controlled experiments	S6
Figure S5. ¹ H NMR spectra of the crude reaction mixture, showing the	S7
formation of aldehyde intermediate during the oxidative coupling of	
benzylamine (1a) to (2a)	
Figure S6. ¹ H NMR spectra of the crude reaction mixture performing in the	S7
water, showing the formation of aldehyde intermediate during the oxidative	
coupling of benzylamine (1a) to (2a)	
Figure S7. FT-IR spectrum of ligand L1 in KBr pallet	S8
Figure S8. FT-IR spectrum of ligand L2 in KBr pallet	S8
Figure S9. FT-IR spectrum of ligand L3 in KBr pallet	S9
Figure S10. ¹ H NMR spectrum of L1 in CDCl ₃	S9
Figure S11. ¹ H NMR spectrum of L2 in CDCl ₃	S10
Figure S12. ¹ H NMR spectrum of L3 in CDCl ₃	S10
Figure S13. ¹³ C NMR spectrum of L1 in CDCl ₃	S11
Figure S14. ¹³ C NMR spectrum of L2 in CDCl ₃	S11
Figure S15. ¹³ C NMR spectrum of L3 in CDCl ₃	S12
Figure S16. ESI-mass spectrum of L1 in methanol	S12

Table of Contents

Figure S17. ESI-mass spectrum of L2 in methanol	S13
Figure S18. ESI-mass spectrum of L3 in methanol	S13
Figure S19. FT-IR spectrum of [Mn]-1 in KBr pallet	S14
Figure S20. FT-IR spectrum of [Mn]-2 in KBr pallet	S14
Figure S21. FT-IR spectrum of [Mn]-3 in KBr pallet	S15
Figure S22. ESI-mass spectrum of [Mn]-1 in methanol	S15
Figure S23. ESI-mass spectrum of [Mn]-2 in methanol	S16
Figure S24. ESI-mass spectrum of [Mn]-3in methanol	S16
Figure S25. GC-MS for entry 1 of table 1	S17
Figure S26. GC-MS for entry 2 of table 1	S17
Figure S27. GC-MS for entry 3 of table 1	S18
Figure S28. GC-MS for entry 4 of table 1	S18
Figure S29. GC-MS for entry 5 of table 1	S19
Figure S30. GC-MS for 2b	S19
Figure S31. GC-MS for 2c	S20
Figure S32. GC-MS for 2d	S21
Figure S33. GC-MS for 2e	S22
Figure S34. GC-MS for 2f	S23
Figure S35. GC-MS for 2g	S24
Figure S36. GC-MS for 2h	S25
Figure S37. GC-MS for 2i	S26
Figure S38. GC-MS for 2j	S27
Table S1. Crystallographic data for complexes [Mn]-1 and [Mn]-2.	S27-S28
Table S2. Selected bond parameters of complexes [Mn]-1 and [Mn]-2.	S28-S29
Table S3. Comparative chart showing the literature available catalysts explored for oxidative coupling of benzylamines	S30-S31
References	S32

Figure S1. X-band EPR spectrum of [Mn]-1 in methanol.

Figure S2. X-band EPR spectrum of [Mn]-2 in methanol.

Figure S3. X-band EPR spectrum of [Mn]-3 in methanol.

Controlled experiments for identification of catalytic species and intermediates.

Controlled experiments are performed by stirring the complex [Mn]-3 with amines {benzyl amine (1a) or *p*-methyl benzyl amine (1e)} (cat/amine = 1:5 molar ratio) at 60 °C for 5 hours. Reaction aliquots are analyzed by ESI-MS analysis, which inferred the presence of several amine coordinated Mn(II) species (Figure S4). Moreover, the organic components of the crude reaction mixture are extracted in diethyl ether and analyzed by NMR in CDCl₃ (Figure S5).

R=CH₃, m/z =577

R=CH₃, m/z =235

Figure S4. ESI-MS analysis of controlled experiments.

Figure S5. ¹H NMR spectra of the crude reaction mixture, showing the formation of aldehyde intermediate during the oxidative coupling of benzylamine (1a) to (2a).

Figure S6. ¹H NMR spectra of the crude reaction mixture performed in water, showing the formation of aldehyde intermediate during the oxidative coupling of benzylamine (1a) to (2a).

Figure S7. FT-IR spectrum of ligand L1 in KBr pellet.

Figure S8. FT-IR spectrum of ligand L2 in KBr pellet.

Figure S9. FT-IR spectrum of ligand L3 in KBr pellet.

Figure S10. ¹H NMR spectrum of L1 in CDCl₃.

Figure S12. ¹H NMR spectrum of L3 in CDCl₃.

Figure S14. ¹³C NMR spectrum of L2 in CDCl₃.

Figure S15. ¹³C NMR spectrum of L3 in CDCl₃.

Figure S16. ESI-mass spectrum of L1 in methanol.

Figure S17. ESI-mass spectrum of L2 in methanol.

Figure S18. ESI-mass spectrum of L3 in methanol.

Figure S19. FT-IR spectrum of [Mn]-1 in KBr pellet.

Figure S20. FT-IR spectrum of [Mn]-2 in KBr pellet.

Figure S21. FT-IR spectrum of [Mn]-3 in KBr pellet.

Figure S22. ESI-mass spectrum of [Mn]-1 in methanol.

Figure S23. ESI-mass spectrum of [Mn]-2 in methanol.

Figure S24. ESI-mass spectrum of [Mn]-3 in methanol.

Figure S25. GC-MS for entry 1 of table 1.

Figure S26. GC-MS for entry 2 of table 1.

Figure S28. GC-MS for entry 4 of table 1.

Figure S29. GC-MS for entry 5 of table1.

Figure S30. GC-MS for 2b.

m/z

Peak Report TIC

Peak#	R.Time	Area	Area%	Height	Height%	A/H	Name
1	7.965	1134986	32.14	467878	37.95	2.43	Anisole
2	11.423	1379599	30.05	416382	33.78	3.31	Benzenemethanamine, 3-chloro-
3	16.052	58112	1.65	38012	3.08	1.53	Hexadecanoic acid, methyl ester
4	17.101	43896	1.24	29562	2.40	1.48	Methyl stearate
5	17.646	915129	20.91	280930	22.79	3.26	4-Chloro-benzenemethanamine, N-(4-chloro-pheny
		3531722	100.00	1232764	100.00		

Line#:5 R.Time:17.645(Scan#:2730) MassPeaks:335 RawMode:Averaged 17.640-17.650(2729-2731) BasePeak:125(83603) BG Mode:Calc. from Peak Group 1 - Event 1 Scan

Figure S31. GC-MS for 2c.

Pea	k R	epo	ort -	TIC
1 64		epu		110

Peak#	R.Time	Area	Area%	Height	Height%	A/H	Name
1	7.978	2898033	50.64	575974	39.36	5.03	Anisole
2	9.926	464986	8.13	238440	16.30	1.95	Benzaldehyde, 2-methyl-
3	12.851	262294	4.58	100606	6.88	2.61	Benzamide, 2-methyl-
4	13.829	139270	2.43	74572	5.10	1.87	Acetamide, N-(2-phenylethyl)-
5	16.408	1910122	33.38	449658	30.73	4.25	2-Methyl-benzenemethanamine, N-(2-methyl-phen
6	17.519	48001	0.84	23967	1.64	2.00	Benzeneethanamine, N-benzoyl-
		5722706	100.00	1463217	100.00		

Line#:5 R.Time:16.410(Scan#:2483) MassPeaks:343 RawMode:Averaged 16.405-16.415(2482-2484) BasePeak:105(89042) BG Mode:Calc. from Peak Group 1 - Event 1 Scan

Figure S32. GC-MS for 2d.

Peak#	R.Time	Area	Area%	Height	Height%	A/H	Name
1	7.944	1062736	37.15	396510	37.87	2.58	Anisole
2	11.820	202455	7.09	110937	10.60	1.82	3-Methoxybenzylamine
3	18.395	570371	19.97	216678	20.70	2.63	Benzene, (3-iodo-1-methoxybutyl)-
4	18.453	1021230	35.80	322808	30.83	3.29	Benzenemethanamine, 4-methoxy-N-[(4-methoxy
		2856792	100.00	1046933	100.00		

Line#:4 R.Time:18.455(Scan#:2892) MassPeaks:373 RawMode:Averaged 18.450-18.460(2891-2893) BasePeak:121(86612) BG Mode:Calc. from Peak Group 1 - Event 1 Scan

Figure S33. GC-MS for 2e.

Figure S34. GC-MS for 2f.

Line#:3 R.Time:17.995(Scan#:2800) MassPeaks:364 RawMode:Averaged 17.990-18.000(2799-2801) BasePeak:122(59586) BG Mode:Calc. from Peak Group 1 - Event 1 Scan

Figure S35. GC-MS for 2g.

Figure S36. GC-MS for 2h.

Line#:8 R.Time:19.085(Scan#:3018) MassPeaks:342 RawMode:Averaged 19.080-19.090(3017-3019) BasePeak:147(89990) BG Mode:Calc. from Peak Group 1 - Event 1 Scan

Table S1. Crystallographic data for complexes [Mn]-1 and [Mn]-2.

	[Mn]-1	[Mn]-2
Formulae	$C_{23}H_{30}MnN_4O_4$	C ₂₄ H ₃₂ MnN ₄ O ₅
Molecular weight	481.45	511.47
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
Temperature/K	293	293
Wavelength	0.71073	0.71073
a/Å	8.8681(13)	9.1830(5)
<i>b</i> /Å	9.0206(14)	9.2736(5)
c/Å	16.558(2)	16.6245(10)
$\alpha/^{\circ}$	79.765(13)	82.388(5)

$\gamma/^{\circ}$ 68.120(14) 67.089(5) $V/Å^3$ 1193.1(3) 1262.91(13) Z 2 2 Density/gcm ⁻¹ 1.340 1.354 Absorption Coefficient 0.589 0.563 Absorption Correction Multi-scan Multi-scan $F(000)$ 506 538.88 Total no of reflections 4310 5752 Reflections, $I>2\sigma(I)$ 2735 4683 Max. $20/^{\circ}$ 25.25 28.89 Ranges (h, k, 1) $-10 \le h \le 10$ $-21 \le h \le 33$ $-19 \le 1 \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 10$ Complete to $20(%)$ 99.8 99.8 Refinement method Full-matrix least-squares on F^2 on F^2 Goof (F^2) 1.111 1.062 R indices $[I>2\sigma(I)]$ 0.0768 0.0563 R Indices (all data) 0.1149 0.0698	$eta/^{\circ}$	77.487(13)	75.759(5)
$V/Å^3$ 1193.1(3) 1262.91(13) Z 2 2 Density/gcm ⁻¹ 1.340 1.354 Absorption Coefficient 0.589 0.563 Absorption Correction Multi-scan Multi-scan F(000) 506 538.88 Total no of reflections 4310 5752 Reflections, $I > 2\sigma(I)$ 2735 4683 Max. $2\theta/°$ 25.25 28.89 Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ Complete to $2\theta(\%)$ 99.8 99.8 Refinement method Full-matrix least-squares $on F^2$ Goof (F^2) 1.111 1.062 R indices $[I > 2\sigma(I)]$ 0.0768 0.0563 R Indices (all data) 0.1149 0.0698	γ/°	68.120(14)	67.089(5)
Z 2 2 Density/gcm ⁻¹ 1.340 1.354 Absorption Coefficient 0.589 0.563 Absorption Correction Multi-scan Multi-scan F(000) 506 538.88 Total no of reflections 4310 5752 Reflections, $I > 2\sigma(I)$ 2735 4683 Max. 20/° 25.25 28.89 Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to 20(%) 99.8 99.8 Refinement method Full-matrix least-squares on F^2 on F^2 Goof (F^2) 1.111 1.062 R indices [$l > 2\sigma(I)$] 0.0768 0.0563	V/ Å ³	1193.1(3)	1262.91(13)
Density/gcm ⁻¹ 1.340 1.354 Absorption Coefficient 0.589 0.563 Absorption Correction Multi-scan Multi-scan F(000) 506 538.88 Total no of reflections 4310 5752 Reflections, $I > 2\sigma(I)$ 2735 4683 Max. 20/° 25.25 28.89 Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to 20(%) 99.8 99.8 Refinement method Full-matrix least-squares on F^2 Goof (F^2) 1.111 1.062 R indices [$I > 2\sigma(I)$] 0.0768 0.0563 R Indices (all data) 0.1149 0.0698	Z	2	2
Absorption Coefficient 0.589 0.563 Absorption Correction Multi-scan Multi-scan F(000) 506 538.88 Total no of reflections 4310 5752 Reflections, $I > 2\sigma(I)$ 2735 4683 Max. $20/^{\circ}$ 25.25 28.89 Ranges (h, k, 1) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-10 \le l \le 17$ $-9 \le l \le 10$ Complete to $20(\%)$ 99.8 99.8 Refinement method Full-matrix least-squares on F^2 Goof (F^2) 1.111 1.062 R indices $[I > 2\sigma(I)]$ 0.0768 0.0563 R Indices (all data) 0.1149 0.0698	Density/gcm ⁻¹	1.340	1.354
Absorption Correction Multi-scan Multi-scan $F(000)$ 506 538.88 Total no of reflections 4310 5752 Reflections, $I > 2\sigma(I)$ 2735 4683 Max. $20/^{\circ}$ 25.25 28.89 Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to $20(\%)$ 99.8 99.8 Refinement method Full-matrix least-squares on F^2 on F^2 Goof (F^2) 1.111 1.062 R indices $[I > 2\sigma(I)]$ 0.0768 0.0563 B Indices (all data) 0.1149 0.0698	Absorption Coefficient	0.589	0.563
F(000)506538.88Total no of reflections43105752Reflections, $I > 2\sigma(I)$ 27354683Max. 20/°25.2528.89Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to 20(%)99.899.8Refinement methodFull-matrix least-squares on F^2 Full-matrix least-squaresGoof (F^2)1.1111.062R indices [$I > 2\sigma(I)$]0.07680.0563B Indices (all data)0.11490.0698	Absorption Correction	Multi-scan	Multi-scan
Total no of reflections43105752Reflections, $I > 2\sigma(I)$ 27354683Max. $2\theta/^{\circ}$ 25.2528.89Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to $2\theta(\%)$ 99.899.8Refinement methodFull-matrix least-squares on F^2 on F^2 Goof (F^2) 1.1111.062R indices $[I > 2\sigma(I)]$ 0.07680.0563R Indices (all data)0.11490.0698	F(000)	506	538.88
Reflections, $I > 2\sigma(I)$ 2735 4683 Max. $2\theta/^{\circ}$ 25.25 28.89 Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to $2\theta(\%)$ 99.8 Refinement method Full-matrix least-squares on F^2 Goof (F^2) 1.111 1.062 R indices $[I > 2\sigma(I)]$ 0.0768 0.0563 B Indices (all data) 0.1149 0.0698	Total no of reflections	4310	5752
Max. $2\theta/^{\circ}$ 25.2528.89Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to $2\theta(\%)$ 99.899.8Refinement methodFull-matrix least-squares on F^2 Full-matrix least-squaresGoof (F^2) 1.1111.062R indices $[I > 2\sigma(I)]$ 0.07680.0563R Indices (all data)0.11490.0698	Reflections, $I \ge 2\sigma(I)$	2735	4683
Ranges (h, k, l) $-10 \le h \le 10$ $-21 \le h \le 33$ $-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to 20(%) 99.8 Refinement method Full-matrix least-squares on F^2 on F^2 Goof (F^2) 1.111 R indices [$I > 2\sigma(I)$] 0.0768 0.0563 0.0563	Max. 20/°	25.25	28.89
$-10 \le k \le 10$ $-8 \le k \le 153$ $-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to $20(\%)$ 99.899.8Refinement methodFull-matrix least-squares $on F^2$ $on F^2$ Goof (F^2) 1.1111.062R indices $[I > 2\sigma(I)]$ 0.07680.0563R Indices (all data)0.11490.0698	Ranges (h, k, l)	$-10 \le h \le 10$	$-21 \le h \le 33$
$-19 \le 1 \le 17$ $-9 \le 1 \le 10$ Complete to $20(\%)$ 99.8 99.8 Refinement method Full-matrix least-squares Full-matrix least-squares on F^2 on F^2 on F^2 Goof (F^2) 1.111 1.062 R indices $[I > 2\sigma(I)]$ 0.0768 0.0563 R Indices (all data) 0.1149 0.0698		-10≤ k ≤10	-8≤ k ≤153
Complete to $2\theta(\%)$ 99.899.8Refinement methodFull-matrix least-squaresFull-matrix least-squareson F^2 on F^2 on F^2 Goof (F^2) 1.1111.062R indices $[I > 2\sigma(I)]$ 0.07680.0563R Indices (all data)0.11490.0698		- 19≤1≤17	-9≤1≤10
Refinement methodFull-matrix least-squaresFull-matrix least-squareson F^2 on F^2 on F^2 Goof (F^2) 1.1111.062R indices $[I > 2\sigma(I)]$ 0.07680.0563R Indices (all data)0.11490.0698	Complete to $2\theta(\%)$	99.8	99.8
on F^2 on F^2 Goof (F^2) 1.1111.062R indices $[I > 2\sigma(I)]$ 0.07680.0563R Indices (all data)0.11490.0698	Refinement method	Full-matrix least-squares	Full-matrix least-squares
Goof (F^2) 1.1111.062R indices $[I > 2\sigma(I)]$ 0.07680.0563R Indices (all data)0.11490.0698		on F^2	on F^2
R indices $[I > 2\sigma(I)]$ 0.0768 0.0563 R Indices (all data) 0.1149 0.0698	Goof (F^2)	1.111	1.062
R Indices (all data) 0 1149 0 0698	R indices $[I \ge 2\sigma(I)]$	0.0768	0.0563
1. mareos (un unu) 0.1117 0.0070	R Indices (all data)	0.1149	0.0698

 Table S2. Selected bond parameters of complexes [Mn]-1 and [Mn]-2.

	[Mn]-1	[Mn]-2
Bond lengths (Å)		
Mn1-N1	2.158(4)	2.156(2)
Mn1-N3	2.164(4)	2.175(2)
Mn1-O1	2.178(4)	2.141(2)

Mn1-O3	2.060(4)	2.073(2)
Bond angles (°)		
O3-Mn1-N3	127.79(16)	107.40(9)
O3-Mn1-N1	111.64(15)	129.66(10)
N3-Mn1-N1	86.14(15)	87.93(8)
O3-Mn1-O1	97.76(15)	95.14(9)
N3-Mn1-O1	130.29(14)	99.18(8)
N1-Mn1-O1	95.28(15)	130.25(8)
O3-Mn1-O1	103.09(15)	95.25(10)
N1-Mn1-O1	89.80(14)	130.11(9)
O2-Mn1-O1	57.68(13)	56.99(8)

Catalysts	Substrate	Solvent	Air/O ₂	T (°C)	t (h)	TON	TOF (h ⁻¹)	Ref.
<u> </u>	D	Colorent Free		100	1.0	200		<u><u> </u></u>
	Benzyl amine	Solvent Free	air	100	18	200	11.11	51
$CuBr_2 + TEMPO$	Benzyl amine	CH ₃ CN/H ₂ O	air	25	12	40	3.33	S2
PPh ₃ + N Ru CO PPh ₃ +	Benzyl amine	TEMPO (20%) in Toluene	O ₂ (1 atm)	90	24	49	2.04	S3
	Benzyl amine	Ionic liquid	O ₂ (1 atm)	120	6	40	6.66	S4
CuPF ₆ -	Benzyl amine	CH ₃ CN	O ₂ (1 atm)	rt	3	14.20	4.73	S5
	Benzyl amine	dioxane	O ₂ (6 atm)	130	3	10000	3333	S6
$L^{*} = \bigvee_{N}^{O} \bigvee_{NH}^{NH} H_{N} \bigvee_{N}^{O}$	Benzyl amine	water	air	40	12	128	10.66	S7
	Benzyl amine	Toluene/ t- BuOOH \$30	air	rt	0.25	3333	13333	S8

Table S3. Comparative chart showing the literature available catalysts explored for oxidative coupling of benzylamines

Au/Al ₂ O ₃	Benzyl amine	Toluene	O ₂	100	24	-	-	S9
			(1 atm)					
PI/CB-Pt	Dibenzylamine	CDCl ₃ /H ₂ O	O ₂	30	16	176	11	S10
			(1 atm)					
Nb ₂ O ₅	Benzyl amine	Benzene	O ₂	irradiat	50	13.29	0.26	S11
			(1 atm)					
CI ⁻ Pd.CI	Benzyl amine	Solvent Free	air	80	6	100	16.7	S12
CuCl	Benzyl amine	CH ₃ CN	air	30	3	30.4	10.13	S13
HN NH O O O								
$\begin{bmatrix} 0 & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	Benzyl amine	Solvent free	air	100	10	100	10	S14
PF ₆	N,N- dimethyl benzylamine	CH₃CN	air	80	1.5	82	54.66	815

References

- S1. R. D. Patil and S. Adimurthy, Adv. Synth. Catal., 2011, 353, 1695-1700.
- S2. Z. Hu and F. M. Kerton, Org. Biomol. Chem., 2012, 10, 1618-1624.
- S3. R. Ray, S. Chandra, V. Yadav, P. Mondal, D. Maiti and G. K. Lahiri, *Chem. Commun.*, 2017, **53**, 4006-4009.
- S4. K. Marui, A. Nomoto, H. Akashi and A. Ogawa, Synthesis, 2016, 48, 31-32.
- S5. B. Xu, E. M. Hartigan, G. Feula, Z. Huang, J. P. Lumb and B. A. Arndtsen, *Angew. Chem., Int. Ed.*, 2016, **55**, 15802-15806.
- S6. S. Zhao, C. Liu, Y. Guo, J. C. Xiao and Q. Y. Chen, J. Org. Chem., 2014, 79, 8926-8931.
- S7. S. Hazra, P. Pilania, M. Deb, A. K. Kushawaha and A. J. Elias, Chem. Eur. J., 2018, 24, 15766-15771.
- S8. Q. L. Yuan, X. T. Zhou and H. B. Ji, Catal. Commun., 2010, 12, 202–206.
- S9. M. Largeron. Eur. J. Org. Chem., 2013, 5225-5235.
- S10. H. Yuan, W. J. Yoo, H. Miyamura and S. Kobayashi, J. Am. Chem. Soc., 2012, 134, 13970-13973.
- S11. S. Furukawa, Y. Ohno, T. Shishido, K. Teramura and T. Tanaka, ACS Catal., 2011, 1, 1150-1153.
- S12. R. E. R. Lugo, M. A. C. Teran, S. De Leon, M. Vogt, A. J. Rosenthal and V. R. Landaeta, *Dalton Trans.*, 2018, 47, 2061-2072.
- S13. A. T. Murray, R. King, J. V. G. Donnelly, M. J. H. Dowley, F. Tuna, D. Sells, M. P. John, and D. R. Carbery, *ChemCatChem*, 2016, 8, 510 514.
- S14. Y. Zhang, F. Lu, R. Huang, H. Zhang and J. Zhao, Catal. Commun., 2016, 81, 10-13.
- S15. M. Rueping, C. Vila, A. Szadkowska, R. M. Koenigs and J. Fronert, *ACS Catal.*, 2012, 2, 2810–2815.