Supplementary Information

Synthesis and antiproliferative activity of benzimidazole-based, trinuclear neutral cyclometallated and cationic, *N^N*-chelated ruthenium(II) complexes

Athi Welsh, ^a Laa-iqa Rylands, ^a Vladimir Arion, ^b Sharon Prince ^c and Gregory S. Smith^{*a}

a. Department of Chemistry, University of Cape Town, Rondebosch 7701, Cape Town, South Africa. Email: Gregory.Smith@uct.ac.za

b. Institut für Anorganische Chemie, Universität Wien, Vienna, Austria.

c. Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory 7925, South Africa.

* G. S. Smith: e-mail, gregory.smith@uct.ac.za; web, <u>http://www.gregsmith-</u>

research.uct.ac.za/;

tel: +27 21 650 5279

Table of Figures

Figure S1: The in vitro activity of the 2-phenyl ligands (7 - 9) and corresponding cyclometallated	
Ru(II) complexes (13 - 15) against the MCF-7 breast cancer cell line at 10 μ M and 20 μ M. Vehicle	(0.1
% DMSO) treated cells, and cells treated with 35 μ M cisplatin (the IC ₅₀ of cisplatin in MCF-7 cells	
treated for 48 hours ⁴⁴) were included as vehicle and positive controls, respectively	4
Figure S2 : The in vitro activity of the 2-pyridyl ligands $(10 - 12)$ and corresponding N^N-Ru(II)	
cationic complexes ([16][PF_] ₂ - [18][PF_] ₂) against the MCF-7 breast cancer cell line at 10 µM an	nd 20
μ M. Vehicle (0.1 % DMSO) treated cells, and cells treated with 35 μ M cisplatin (the IC _{ro} of cisplat	in in
MCF-7 cells treated for 48 hours 44) were included as vehicle and positive controls, respectively.	4
Figure S3: The in vitro activity of the 2-pyridyl ligands $(10 - 12)$ and corresponding NAN-Ru(II)	
cationic complexes ([16][PF_] [18][PF_]_) against the MDA-MB-231 breast cancer cell line at 20)
$_{\rm L}$ Vehicle (0.1 % DMSO) treated cells and cells treated with 23 $_{\rm L}$ M cisplatin (the IC ₁₀ of cisplat	, in in
MDA-MB-231 cells treated for 48 hours ⁴⁶) were included as vehicle and positive controls	
respectively	5
Figure S4: Treatment of MCE-7 cells with increasing concentrations of 10 [16]PE 1 11 [17]PE 1	J
circlation at IC for 49 hours	3 anu E
Figure SE: Treatment of MDA MR 221 colls with increasing concentrations of 10 [16]DE 1 11	
Figure 35 . Treatment of MDA-MB-251 cells with increasing concentrations of 10 , [10]PF ₆] ₃ , 11 ,	c
[17]PF _{6]3} and displatin at IC ₅₀ for 48 hours	0
Figure S6: Treatment of non-tumorigenic MiCF-12A cells with increasing concentrations of 10,	c
$[16]PF_{6]3}$ and cisplatin for 48 nours	6
Figure S7: Treatment of non-tumorigenic MCF-12A cells with increasing concentrations of 11,	_
$[17]PF_{6}]_{3}$ and cisplatin for 48 hours.	/
Figure S8: I reatment of MCF-7 breast cancer cells with increasing concentrations of 19 and [20]P	'F6] _
and cisplatin at IC_{50} of 48 hours	7
Figure S9: NMR Spectra of 1 in DMSO(d_6)	8
Figure S10: NMR Spectra of 2 in DMSO(d ₆)	9
Figure S11: NMR Spectra of 3 in DMSO(d ₆)	10
Figure S12 : NMR Spectra of 4 in DMSO(d_6)	11
Figure S13 : NMR Spectra of 5 in DMSO(d_6)	12
Figure S14: NMR Spectra of 6 in DMSO(d_6)	13
Figure S15: NMR Spectra of 7 in DMSO(d ₆)	14
Figure S16: NMR Spectra of 8 in DMSO(d ₆)	15
Figure S17: NMR Spectra of 9 in CDCl3.	16
Figure S18: NMR Spectra of 10 in DMSO(d ₆)	17
Figure S19: NMR Spectra of 11 in DMSO(d ₆)	18
Figure S20: NMR Spectra of 12 in CDCl ₃	19
Figure S21: NMR Spectra of 13 in DMSO(d ₆)	20
Figure S22: HSQC of 13 in DMSO(d ₆)	21
Figure S23: NMR Spectra of 14 in DMSO(d ₆)	22
Figure S24: NMR Spectra of 15 in DMSO(d ₆)	23
Figure S25: NMR Spectra of $[16][PF_6]_3$ in DMSO(d ₆).	24
Figure S26: NMR Spectra of $[17][PF_6]_3$ in DMSO(d ₆).	25
Figure S27: NMR Spectra of [18][PF ₆] ₃ in DMSO(d ₆).	26
Figure S28: NMR spectra of $[20][PF_6]$ in DMSO(d ₆)	27
Figure S29: The HR-ESI Mass Spectrum of 13 recorded in the positive-ion mode (+ve).	28
Figure S30: The HR-ESI Mass Spectra of 15 (A) and 14 (B) recorded in the positive-ion mode (+ve)),
with assigned characteristic fragments observed	28

Figure S31: The HR-ESI Mass Spectrum of $[16][PF_6]_3$ recorded in the positive-ion mode (+ve).29 Figure S32: The HR-ESI Mass Spectrum of $[17][PF_6]_3$ recorded in the positive-ion mode (+ve).30 Figure S33: The HR-ESI Mass Spectrum of $[18][PF_6]_3$ recorded in the positive-ion mode (+ve).30 Figure S34: The HR-ESI Mass Spectrum of $[20][PF_6]$ recorded in the positive-ion mode (+ve).30 Figure S35: The UV/ Vis spectra of $[16][PF_6]_3$ in DMSO recorded over 48 hours at 37 °C......31 Figure S36: The UV/ Vis spectra of $[17][PF_6]_3$ in DMSO recorded over 48 hours at 37 °C......31 Figure S37: The UV/ Vis spectra of $[18][PF_6]_3$ in DMSO recorded over 48 hours at 37 °C.......31

Figure S1: The *in vitro* activity of the 2-phenyl ligands (**7** - **9**) and corresponding cyclometallated Ru(II) complexes (**13** - **15**) against the MCF-7 breast cancer cell line at 10 μ M and 20 μ M. Vehicle (0.1 % DMSO) treated cells, and cells treated with 35 μ M cisplatin (the IC₅₀ of cisplatin in MCF-7 cells treated for 48 hours ⁴⁴) were included as vehicle and positive controls, respectively.

Figure S2: The *in vitro* activity of the 2-pyridyl ligands (**10** – **12**) and corresponding *N^N*-Ru(II) cationic complexes (**[16]**[**PF**₆]₃ - **[18]**[**PF**₆]₃) against the MCF-7 breast cancer cell line at 10 μ M and 20 μ M. Vehicle (0.1 % DMSO) treated cells, and cells treated with 35 μ M cisplatin (the IC₅₀ of cisplatin in MCF-7 cells treated for 48 hours ⁴⁴) were included as vehicle and positive controls, respectively

Figure S3: The *in vitro* activity of the 2-pyridyl ligands (**10** – **12**) and corresponding N^N-Ru(II) cationic complexes (**[16]**[**PF**₆]₃) - [**18**][**PF**₆]₃) against the MDA-MB-231 breast cancer cell line at 20 μ M. Vehicle (0.1 % DMSO) treated cells, and cells treated with 23 μ M cisplatin (the IC₅₀ of cisplatin in MDA-MB-231 cells treated for 48 hours⁴⁶) were included as vehicle and positive controls, respectively.

Figure S4: Treatment of MCF-7 cells with increasing concentrations of 10, [16]PF₆]₃, 11, [17]PF₆]₃ and cisplatin at IC₅₀ for 48 hours

Figure S5: Treatment of MDA-MB-231 cells with increasing concentrations of 10, [16]PF₆]₃, 11, [17]PF₆]₃ and cisplatin at IC₅₀ for 48 hours

Figure S6: Treatment of non-tumorigenic MCF-12A cells with increasing concentrations of 10, [16]PF₆]₃ and cisplatin for 48 hours

Figure S7: Treatment of non-tumorigenic MCF-12A cells with increasing concentrations of **11**, **[17]PF**₆**]**₃ and cisplatin for 48 hours

Figure S8:Treatment of MCF-7 breast cancer cells with increasing concentrations of 19 and [20]PF6] and cisplatin at IC_{50} of 48 hours

Figure S9: NMR Spectra of 1 in DMSO(d₆).

Figure S10: NMR Spectra of $\mathbf{2}$ in DMSO(d₆).

Figure S11: NMR Spectra of 3 in DMSO(d₆).

Figure S12: NMR Spectra of 4 in DMSO(d₆).

Figure S13: NMR Spectra of 5 in DMSO(d₆).

Figure S14: NMR Spectra of 6 in DMSO(d₆).

Figure S15: NMR Spectra of 7 in DMSO(d₆).

Figure S16: NMR Spectra of 8 in DMSO(d₆).

Figure S17: NMR Spectra of 9 in CDCl3.

Figure S18: NMR Spectra of 10 in DMSO(d₆).

Figure S19: NMR Spectra of 11 in DMSO(d₆).

Figure S20: NMR Spectra of 12 in CDCl₃.

Figure S21: NMR Spectra of 13 in DMSO(d₆).

www.ingothy. Anone have been and the providence of the have work the second of the sec white white white white WWW WWW vhuh MMM/M - 10 {1.87,18.80} {0.63,22.43} - 20 {0.45,21.67} {1.93,30.67} ואנאימידיייא איניאנאיאנאיאנאיאנאין אויזיאיאן איזאיזאין אויזיאיזען - 30 {2.50,40.16} {4.42,43.59} 40 {2.94,53.93} - 50 -60 - 70 {5.20,81.13} f1 (ppm) {5.40,82.46} - 80 {5.97,89.08} {5.70,89.75} MANNANNA MA 90 100 {7.16,111.09} 110 {7.97,117.93} 20 {6.79,122.36} {7.33,123.66} 130 Mourter Wheel Warder of M {7.07,128.14} {8.27,141.34} 140 150 5.5 4.5 4.0 f2 (ppm) 3.5 3.0 2.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.0 2.0 1.5 1.0 0.5 0.0

Figure S22: HSQC of 13 in DMSO(d₆).

Figure S23: NMR Spectra of 14 in DMSO(d₆).

Figure S24: NMR Spectra of 15 in DMSO(d₆).

Figure S25: NMR Spectra of $[16][PF_6]_3$ in DMSO(d₆).

Figure S26: NMR Spectra of $[17][PF_6]_3$ in DMSO(d₆).

Figure S27: NMR Spectra of [18][PF₆]₃ in DMSO(d₆).

Figure S28: NMR spectra of [20][PF₆] in DMSO(d₆).

Figure S29: The HR-ESI Mass Spectrum of 13 recorded in the positive-ion mode (+ve).

Figure S30: The HR-ESI Mass Spectra of 15 (A) and 14 (B) recorded in the positive-ion mode (+ve), with assigned characteristic fragments observed

.

Figure S31: The HR-ESI Mass Spectrum of [16][PF₆]₃ recorded in the positive-ion mode (+ve).

Figure S32: The HR-ESI Mass Spectrum of [17][PF₆]₃ recorded in the positive-ion mode (+ve).

Figure S33: The HR-ESI Mass Spectrum of [18][PF₆]₃ recorded in the positive-ion mode (+ve).

Figure S34: The HR-ESI Mass Spectrum of [20][PF₆] recorded in the positive-ion mode (+ve).

Figure S35: The UV/ Vis spectra of [16][PF₆]₃ in DMSO recorded over 48 hours at 37 °C.

Figure S36: The UV/ Vis spectra of [17][PF₆]₃ in DMSO recorded over 48 hours at 37 °C

Figure S37: The UV/ Vis spectra of [18][PF₆]₃ in DMSO recorded over 48 hours at 37 °C

Synthesis of the tris-benzimidazole ligands and their precursors

The first step towards the synthesis of the tris-benzimidazole ligands is a nucleophilic aromatic substitution (S_NAr) reaction, in which an excess of a commercially available substituted *ortho*-halogenated nitrobenzene is reacted with tris(2-aminoethyl)amine. The core prerequisite of a S_NAr reaction is that a strong electron-withdrawing group is present in either the *ortho*- or *para*- positions, relative to the potential leaving group, which serves to stabilize the Meisenheimer complex formed as the reaction proceeds. The desired compounds were isolated and purified *via* column chromatography to yield either bright yellow solids (1 and 2) or a dark orange solid (3) in moderate yields (35 – 48%) and are soluble in several polar organic solvents including ethanol, methanol, acetone and dimethylsulfoxide. The ¹H NMR spectra of the tris-nitrobenzene compounds 1 – 3 reveals the presence of a triplet at 8.1 – 8.5 ppm corresponding to the secondary amine protons which supports complete substitution of all three arms of the tris-core. Furthermore, the splitting pattern observed in the aromatic regions of the spectra (6.5 – 8.0 ppm) is consistent with a splitting pattern associated with a 1,2,4-trisubstituted aromatic ring with three electronically discrete functional groups. The only difference is compound 1, as 1 consists of a 1,2-disubstituted aromatic ring.

The synthesis of the tris-1,2-benzenediamines from the tris-nitrobenzenes (1 - 3) involves the reduction of the nitro- functionalities to primary amine functionalities. This was achieved by using zinc and ammonium chloride as reducing agents under mild conditions. This reduction proved to be highly efficient affording the tris-1,2-diamines in excellent yields (75 – 97%).

The comparison of each ¹H NMR spectrum of the tris-1,2-diamines (4 - 6) with the corresponding trisnitrobenzene (1-3) results in two main observations. Firstly, the signal between 4.3 - 3.8 ppm in each spectrum which corresponds to the protons of the primary amine functionalities is the first indicator of successful reduction of the nitro-functionalities to primary amine groups. Secondly, the aromatic signals of 4 - 6 converge and some coalesce relative to the aromatic signals of the corresponding nitro-benzenes (1 - 3), attesting to the similar electronic effects of the primary and secondary amine groups on the aromatic ring which corroborates successful reduction. Further analysis of the tris-1,2-diamines (4-6) using infrared (IR) spectrometry revealed two absorption bands between 3299 and 3376 cm⁻¹. These correspond to the symmetrical and asymmetrical stretches of the N-H bonds of the primary amine moieties and are thus indicative of the successful reduction of the nitro- groups to primary aryl amine groups.

Finally, the synthesis of the tris-benzimidazole ligands, from the tris-1,2-benzenediamines (4 - 6) entailed a cyclisation-condensation reaction with either benzaldehyde or 2-pyridinecarboxaldehyde in the presence of a catalytic amount of trifluoroacetic acid and magnesium sulfate.