Electronic supporting information

The effect of layer-interlayer Chemistry of LDHs on developing high

temperature carbon capture materials

G. V. Manohara*, M. Mercedes Maroto-Valer, Susana Garcia*

Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences,

Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.

*Corresponding authors;

Email: s.garcia@hw.ac.uk, manoharagv@gmail.com

SI 1. (a) PXRD pattern and (b) FTIR spectrum of Ca/Al-adamantanecarboxylate LDH synthesized by co-hydration route.

SI 2. TGA profile of Ca/Al-adamantanecarboxylate LDH synthesized by co-hydration route under N_2 atmosphere.

SI 3. PXRD pattern of Organic-Inorganic hybrid MMOs obtained from decomposition of Ca/Al-adamantanecarboxylate LDH.

SI 4. FTIR spectrum of Organic-Inorganic hybrid MMOs obtained from decomposition of Ca/Al-adamantanecarboxylate LDH. Inset shows the extended spectra between 4000 and 2000 cm⁻¹.

SI 5. (a)Adsorption isotherm (N₂, 77 K) and (b) Pore size distribution of Organic-Inorganic hybrid MMOs obtained from decomposition of Ca/Aladamantanecarboxylate LDH.

SI 6. Organic-Inorganic hybrid MMOs obtained from decomposition of Ca/Aladamantanecarboxylate LDH. (a) SEM image used for EDX analysis (b) EDX spectrum corresponds to selected area 1 in (a) and (c) EDX spectrum corresponds to selected area 2 in (a).

SI 7. EDX spectrum of Organic-Inorganic hybrid MMOs obtained from decomposition

of Ca/Al-adamantanecarboxylate LDH.

SI 8. Kinetic data of carbonation/regeneration cycle (cycle number 55-56) of Organic-Inorganic hybrid MMOs obtained from decomposition of Ca/Aladamantanecarboxylate LDH.