Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Azo-triazolide Bis-cyclometalated Ir(III) Complexes via Cyclization of 3-Cyanodiarylformazanate Ligands

Ge Mu, Zhili Wen, Judy I-Chia Wu, and Thomas S. Teets*

University of Houston, Department of Chemistry,

3585 Cullen Blvd. Room 112, Houston, TX USA 77204-5003

Email:tteets@uh.edu

Contents

Index	Page
IR spectral data	S2
X-ray crystallographic summary tables	S3
Table of selected bond lengths and angles for 1a	S4
NMR spectra of all new compounds	S5–S13
Solvent-dependent absorption spectra of all complexes and summary	S14–S15
table	
Cyclic voltammograms of complexes in extended scan windows	S16
Optimized Cartesian coordinates from DFT calculations	S17–S28

Compound	$\nu(CN)/cm^{-1}$	ν (NH)/ cm ⁻¹	Other transitions, v/ cm ⁻¹
1 a	2206		1608(m), 1479, 1214
2a			1597(m), 1474(m), 1289(m)
3 a			1582(m), 1434(m), 1295(m)
4 a	2207		1582, 1438, 1216
1b	2202		1607(m), 1476, 1224(m)
2b	2213		1738, 1601(m), 1402, 1228(m)
3b	2205		1581(m), 1406(m), 1223(m)
\mathbf{Fza}^1	2219(m)	3313	1525, 1281(m)
Fzb	2222	3332	1527, 1277(m)

Table S1. IR spectral data

Reference

1 J. B. Gilroy, P. O. Otieno, M. J. Ferguson, R. McDonald and R. G. Hicks, *Inorg. Chem.*, 2008, **47**, 1279–1286.

	1a·2CHCl ₃	2a	3a
CCDC	1946976	1946977	1946978
Crystal data	·		
Chemical formula	C ₄₂ H ₃₆ Cl ₆ IrN ₇	$C_{40}H_{30}F_4IrN_7$	$C_{44}H_{34}IrN_7S_2$
M _r	1043.68	876.91	917.10
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, P1	Monoclinic, $P2_1/n$
a, b, c (Å)	16.837 (3), 17.611 (3), 14.610 (3)	9.724 (4), 12.386 (5), 15.409 (6)	15.0406 (11), 13.7393 (10), 18.9988 (14)
α, β, γ (°)	90, 108.390 (2), 90	83.506 (4), 86.618 (4), 67.247 (3)	90, 105.613 (1), 90
$V(Å^3)$	4110.9 (14)	1700.2 (11)	3781.2 (5)
Ζ	4	2	4
μ (mm ⁻¹)	3.68	3.99	3.68
Crystal size (mm)	$0.40 \times 0.28 \times 0.10$	$0.23 \times 0.16 \times 0.07$	$0.37 \times 0.29 \times 0.15$
Data collection			
T _{min} , T _{max}	0.521, 0.746	0.416, 0.746	0.553, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25545, 9473, 8663	22822, 7662, 6820	23405, 8759, 7783
R _{int}	0.026	0.050	0.027
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.651	0.648	0.652
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.088, 1.05	0.039, 0.089, 1.05	0.021, 0.047, 1.05
No. of reflections	9473	7662	8759
No. of parameters	528	473	491
No. of restraints	78	0	0
	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0481P)^{2} + 10.8851P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^2(F_o^2) + 11.079P]$ where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0202P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	2.07, -1.44	3.27, -2.97	0.67, -0.83

	Table S2.	Crystallogra	phic summary	for	1a ,	2a	and 3a.
--	-----------	--------------	--------------	-----	-------------	----	---------

	1a
d (Ir–N5)	2.160(3)
d (Ir–N3)	2.141(3)
d (N5–N6)	1.283(5)
d (N5–C1)	1.399(5)
d (C1–C2)	1.435(5)
d (C1–N4)	1.329(5)
d (C2–N7)	1.150(5)
d (N3–N4)	1.303(4)
∠N3–Ir–N5	75.88(12)

 Table S3. Selected bond lengths and angles for 1a

Fig. S1. Room-temperature ¹H NMR spectrum of Fzb, recorded at 400 MHz in CDCl₃.

Fig. S2. Room-temperature ${}^{13}C{}^{1}H$ NMR spectrum of Fzb, recorded at 151 MHz in CDCl₃.

Fig. S3. Room-temperature ¹H NMR spectrum of 1a, recorded at 500 MHz in CDCl₃.

Fig. S4. Room-temperature ${}^{13}C{}^{1}H$ NMR spectrum of 1a, recorded at 151 MHz in CDCl₃.

Fig. S5. Room-temperature ¹H NMR spectrum of 2a, recorded at 500 MHz in CDCl₃.

Fig. S6. Room-temperature ¹⁹F NMR spectrum of **2a**, recorded at 470 MHz in CDCl₃.

Fig. S7. Room-temperature ${}^{13}C{}^{1}H$ NMR spectrum of 2a, recorded at 151 MHz in CDCl₃.

Fig. S8. Room-temperature ¹H NMR spectrum of 3a, recorded at 600 MHz in CDCl₃.

Fig. S9. Room-temperature ${}^{13}C{}^{1}H$ NMR spectrum of 3a, recorded at 151 MHz in CDCl₃.

Fig. S10. Room-temperature ¹H NMR spectrum of 4a, recorded at 500 MHz in CDCl₃.

Fig. S11. Room-temperature ${}^{13}C{}^{1}H$ NMR spectrum of 4a, recorded at 126 MHz in CDCl₃.

Fig. S12. Room-temperature ¹H NMR spectrum of 1b, recorded at 500 MHz in CDCl₃.

Fig. S13. Room-temperature ${}^{13}C{}^{1}H$ NMR spectrum of 1b, recorded at 151 MHz in CDCl₃.

Fig. S14. Room-temperature ¹H NMR spectrum of 2b, recorded at 500 MHz in CDCl₃.

Fig. S15. Room-temperature ¹⁹F NMR spectrum of 2b, recorded at 470 MHz in CDCl₃.

Fig. S16. Room-temperature ${}^{13}C{}^{1}H$ NMR spectrum of 2b, recorded at 151 MHz in CDCl₃.

Fig. S17. Room-temperature ¹H NMR spectrum of 3b, recorded at 500 MHz in CDCl₃.

Fig. S18. Room-temperature ${}^{13}C{}^{1}H$ NMR spectrum of **3b**, recorded at 151 MHz in CDCl₃.

Fig. S19. UV-Vis absorption spectra of complex **1a–4a**, **1b–3b**, recorded in toluene, tetrahydrofuran (THF), and methanol (MeOH) at room temperature. The spectra are normalized to the low-energy absorption maximum.

		λ/nm	
	Toluene	THF	MeOH
1a	308, 433	305, 434	302, 427
2a	308, 373(sh)	306,369(sh)	301, 369(sh)
3 a	323, 430	321, 430	320, 424
4 a	298, 427, 510(sh)	413, 509(sh)	298, 408(sh), 509(sh)
1b	304(sh), 469, 551(sh)	309(sh), 469,542(sh)	309(sh), 470, 559(sh)
2b	306, 439, 540	306, 439, 536	305, 439, 535
3 b	323, 403(sh), 453, 565	321, 402(sh), 453, 557	320, 452, 564

Table S4. Summary of UV-vis absorption maxima for spectra recorded in toluene,tetrahydrofuran(THF) and MeOH.

Fig. S20. Overlaid cyclic voltammograms of (a) complexes **1a–4a** and **3b** (only additional oxidation peaks revealed) and (b) complexes **1b** and **2b** (both additional reduction and oxidation peaks revealed) in extended scan windows. CVs were recorded in CH₂Cl₂ with 0.1 M NBu₄PF₆ supporting electrolyte, using a glassy carbon working electrode and a scan rate of 0.1 V/s. The arrows indicate the scan direction.

Table S5. Summary of electroche	mical data of complexes	1a–4a and 1b–3b ir	n extended scan
windows.			

	$E^{ox}(V)$	E ^{red} (V)
1a	0.66 ^a , 1.04 ^b , 1.30 ^b	-1.85
2a	0.84 ^a , 1.24 ^b	-1.76
3a	0.66 ^a , 1.24 ^b	-1.82
4 a	0.61 ^a , 1.05 ^b , 1.34 ^b	-1.88
1b	$0.46^{a}, 1.04^{b}$	$-1.82, -2.39^{b}$
2b	0.68, 1.14 ^b	$-1.64, -2.23^{b}$
3b	$0.49, 0.64^{b}$	-1.84

^a reversible wave, but become irreversible after additional waves. ^b Irreversible wave. $E_{p,c}$ or $E_{p,a}$ is reported.

	Х	Y	Ζ
Ir	0.97529	0.80906	4.69774
Ν	0.52450	-0.48801	6.25832
Ν	1.42679	1.95851	3.01937
Ν	2.21241	2.30476	5.74432
Ν	1.58080	3.31326	6.24474
Ν	-0.46172	2.19621	5.70651
Ν	-1.69744	2.17056	5.99374
Ν	-0.99613	5.18435	7.45491
С	0.24800	3.25898	6.27418
С	-0.44237	4.31336	6.93321
С	0.88826	-0.28443	7.53770
Н	1.43507	0.62711	7.72827
С	0.58359	-1.17867	8.54718
Н	0.90405	-0.97403	9.55994
С	-0.15318	-2.31881	8.22267
Н	-0.41608	-3.03991	8.98772
С	-0.56627	-2.50858	6.91553
Н	-1.16380	-3.36943	6.65040
С	-0.22434	-1.58120	5.92278
С	-0.17634	-0.55885	3.72077
С	-0.47095	-0.60632	2.35234
Н	-0.12205	0.18676	1.70035
С	-1.19477	-1.66082	1.80525
Н	-1.41337	-1.66846	0.74207
С	-1.63394	-2.71621	2.60963
Н	-2.19972	-3.53437	2.17973
С	-1.33288	-2.71153	3.96256
Н	-1.66733	-3.53567	4.58256
С	-0.60304	-1.65040	4.51741
С	0.74972	3.05675	2.64047
Н	-0.07686	3.34232	3.27251
С	1.09484	3.79786	1.52533
Н	0.51465	4.67239	1.26305
С	2.20874	3.40207	0.78545
Н	2.51902	3.96494	-0.08710
С	2.92073	2.28344	1.18270
Н	3.79153	1.96428	0.62741
С	2.51674	1.55022	2.30527

 Table S6. Optimized ground-state Cartesian coordinates for 1a.

С	2.51393	-0.26248	3.92079
С	3.01028	-1.49185	4.36765
Н	2.52938	-1.99625	5.19792
С	4.12157	-2.07992	3.77090
Н	4.49298	-3.02869	4.14451
С	4.76169	-1.46068	2.69396
Н	5.63257	-1.91719	2.23846
С	4.26414	-0.26378	2.20187
Н	4.75336	0.20633	1.35630
С	3.14093	0.32789	2.79746
С	3.60960	2.51071	5.50245
С	4.52069	1.53693	5.96086
С	5.85606	1.62293	5.57208
Н	6.55291	0.86713	5.91749
С	6.30177	2.66162	4.76300
Н	7.34020	2.70833	4.45468
С	5.41121	3.65279	4.37542
Н	5.75979	4.48452	3.77194
С	4.06208	3.61091	4.74255
С	4.09800	0.46253	6.92553
Н	3.74149	0.90716	7.85990
Н	4.93634	-0.19441	7.16312
Н	3.29805	-0.15119	6.52138
С	3.17888	4.76514	4.33486
Н	3.12645	5.50608	5.13684
Н	2.15661	4.46494	4.12741
Н	3.57888	5.25280	3.44305
С	-2.50613	1.11694	5.50066
С	-2.92108	1.04079	4.16175
С	-3.77109	-0.00419	3.79251
Н	-4.07927	-0.08559	2.75614
С	-4.21666	-0.93245	4.72281
Н	-4.86256	-1.74553	4.41189
С	-3.85656	-0.79651	6.06080
Н	-4.23522	-1.49511	6.79970
С	-3.02386	0.23963	6.47559
С	-2.51145	2.07069	3.14443
Н	-2.36653	3.05004	3.60554
Н	-3.27718	2.16972	2.37224
Н	-1.58373	1.78012	2.65026

n · /	(\mathbf{D},\mathbf{C})		
Н	-2.97520	1.44476	8.25389
Н	-3.20738	-0.29126	8.55381
Н	-1.61884	0.34612	8.11979
С	-2.68869	0.43992	7.93084

Point group (P.G.) = C_1

Number of imaginary frequency (NIm) = 0

Total electronic energy with ZPE = -2032.35834 a.u.

	Х	Y	Ζ
Ir	0.12658	1.70620	0.03318
Н	2.84873	5.61744	2.37911
Н	-0.73542	6.73634	0.32751
Н	2.38537	2.88378	-4.52793
Н	4.79852	0.75813	-1.70629
Ν	-1.24584	2.87544	-1.00220
Ν	1.65161	0.62176	0.93699
Ν	-2.24983	-1.68948	0.55959
Ν	-0.66800	-1.26149	-1.03174
Ν	-1.56484	-2.14015	-0.47377
Ν	-1.49134	1.51282	1.62039
Ν	-2.20560	0.45964	1.62985
С	-1.76750	-0.44651	0.69483
С	-0.77348	-0.15774	-0.29518
С	-2.09117	2.38588	-1.92918
Н	-1.99869	1.32691	-2.12776
С	-3.02087	3.17909	-2.57574
Н	-3.68037	2.74133	-3.31332
С	-3.08625	4.53259	-2.23989
Н	-3.81448	5.18221	-2.71164
С	-2.20123	5.04207	-1.30621
Н	-2.22411	6.09169	-1.04835
С	-1.25219	4.20754	-0.69867
С	0.70559	3.61978	0.62107
С	1.81057	4.01811	1.38370
Н	2.54481	3.27562	1.68253
С	1.98573	5.34105	1.78093
С	1.05561	6.31926	1.41575
Н	1.18597	7.34618	1.73743
С	-0.02734	5.96952	0.62266
С	-0.19386	4.63770	0.21325
С	1.52715	-0.05587	2.09358
Н	0.56796	0.02312	2.58280
С	2.55046	-0.81530	2.62848
Н	2.39837	-1.33685	3.56421
С	3.75823	-0.88877	1.93115
Н	4.58592	-1.46971	2.32108
С	3.87777	-0.22814	0.72200

Table S7. Optimized ground-state Cartesian coordinates for 1a'.

Н	4.79237	-0.29837	0.14946
С	2.80636	0.51967	0.21188
С	1.52159	1.77371	-1.42011
С	1.41885	2.38285	-2.68011
Н	0.48970	2.85501	-2.97542
С	2.49417	2.40372	-3.56039
С	3.71772	1.82014	-3.21194
Н	4.55343	1.84533	-3.90150
С	3.84998	1.21021	-1.97560
С	2.76613	1.18030	-1.08313
С	-2.00150	2.62253	2.37528
С	-1.19761	3.18317	3.38305
С	-1.62158	4.36438	3.98857
Н	-1.00549	4.80762	4.76285
С	-2.81045	4.97695	3.60828
Н	-3.11657	5.90684	4.07420
С	-3.61026	4.38742	2.63813
Н	-4.54652	4.85481	2.35206
С	-3.23432	3.19611	2.01091
С	0.05568	2.49654	3.85201
Н	0.57789	3.10584	4.59093
Н	0.73759	2.31549	3.02460
Н	-0.18151	1.53228	4.31293
С	-4.15493	2.57868	0.98670
Н	-4.72697	1.75792	1.42643
Н	-3.61443	2.16553	0.13771
Н	-4.85717	3.32446	0.60963
С	-1.71445	-3.47330	-0.97199
С	-2.94239	-3.85233	-1.52940
С	-3.05698	-5.15753	-2.01217
Н	-3.99559	-5.47801	-2.45081
С	-1.98299	-6.03922	-1.94571
Н	-2.08839	-7.04816	-2.32874
С	-0.77417	-5.63189	-1.39037
Н	0.05827	-6.32488	-1.33629
С	-0.61494	-4.33863	-0.88845
С	-4.09527	-2.88432	-1.61124
Н	-4.49530	-2.66745	-0.61820
Η	-4.89652	-3.28932	-2.23142
Н	-3.77504	-1.93047	-2.03963

С	0.68703	-3.89434	-0.27082
Н	1.35564	-4.74491	-0.12785
Н	0.52030	-3.41843	0.69952
Н	1.18365	-3.15352	-0.90086
$P.G. = C_1$			

NIm = 0

Total electronic energy with ZPE = -2032.33720 a.u.

	Х	Y	Ζ
Ir	0.13139	1.69765	0.03194
F	2.98261	5.64334	2.58920
F	-0.95546	6.89995	0.39472
F	2.30428	2.99401	-4.75449
F	5.04232	0.74576	-1.69877
Ν	-1.25121	2.85432	-1.00336
Ν	1.66430	0.62577	0.93486
Ν	-2.24385	-1.69141	0.56257
Ν	-0.65722	-1.26834	-1.02430
Ν	-1.55915	-2.14342	-0.46947
N	-1.47432	1.50892	1.62130
N	-2.19128	0.45841	1.63509
С	-1.75718	-0.45057	0.70120
С	-0.76021	-0.16638	-0.28621
С	-2.07652	2.34786	-1.93897
Н	-1.96418	1.29017	-2.13326
С	-3.01012	3.12307	-2.60078
Н	-3.65150	2.67237	-3.34641
С	-3.09951	4.47464	-2.26930
Н	-3.82914	5.11308	-2.75373
С	-2.23935	5.00563	-1.32305
Н	-2.28258	6.05132	-1.06708
С	-1.28387	4.18761	-0.69921
С	0.69131	3.61419	0.62332
С	1.79164	3.98885	1.39647
Н	2.54293	3.26770	1.69635
С	1.92498	5.30028	1.81953
С	1.00364	6.28959	1.50088
Н	1.11234	7.30492	1.85394
С	-0.06162	5.92208	0.70164
С	-0.23808	4.61773	0.22644
С	1.53078	-0.05203	2.08962
Н	0.56474	0.01866	2.56606
С	2.55346	-0.80140	2.63896
Н	2.39409	-1.32297	3.57342
С	3.76870	-0.86087	1.95714
Н	4.59876	-1.43100	2.35757
С	3.90279	-0.20137	0.74769

 Table S8. Optimized ground-state Cartesian coordinates for 2a.

Н	4.82320	-0.25870	0.19041
С	2.82893	0.53472	0.22089
С	1.51890	1.77145	-1.42373
С	1.37991	2.37616	-2.67827
Н	0.45344	2.83647	-2.99195
С	2.45402	2.40603	-3.54721
С	3.69636	1.86399	-3.23789
Н	4.52556	1.90465	-3.92914
С	3.82513	1.27028	-1.99945
С	2.77583	1.19574	-1.07409
С	-1.97331	2.62908	2.36921
С	-1.16386	3.18812	3.37367
С	-1.56149	4.39281	3.95008
Н	-0.94145	4.83589	4.72128
С	-2.73021	5.02867	3.54496
Н	-3.01294	5.97861	3.98387
С	-3.54040	4.43630	2.58557
Н	-4.46172	4.92157	2.28222
С	-3.19195	3.22128	1.98822
С	0.06731	2.47914	3.86832
Н	0.59193	3.08401	4.60913
Н	0.75845	2.27405	3.05447
Н	-0.19726	1.52491	4.33489
С	-4.12467	2.60124	0.97697
Н	-4.71652	1.80572	1.43665
Н	-3.59426	2.15382	0.13905
Н	-4.80875	3.35364	0.58087
С	-1.71833	-3.47396	-0.97379
С	-2.94776	-3.83861	-1.53728
С	-3.07249	-5.14104	-2.02481
Н	-4.01211	-5.45128	-2.46845
С	-2.00716	-6.03302	-1.95651
Н	-2.12061	-7.03966	-2.34310
С	-0.79670	-5.63926	-1.39508
Н	0.02876	-6.34035	-1.34005
С	-0.62704	-4.34915	-0.88856
С	-4.09147	-2.85981	-1.62019
Н	-4.49631	-2.64593	-0.62840
Η	-4.89232	-3.25401	-2.24762
Н	-3.76093	-1.90619	-2.04122

С	0.67721	-3.91911	-0.26575
Н	1.33531	-4.77703	-0.11894
Н	0.51257	-3.44013	0.70341
Н	1.18591	-3.18605	-0.89538
$P.G. = C_1$			

Total electronic energy with ZPE = -2429.43831 a.u.

	Х	Y	Ζ
Ir	-0.21129	-0.12405	0.17305
Ν	-0.66128	-1.42803	1.72689
Ν	0.23288	1.02485	-1.50418
Ν	1.03214	1.35199	1.21784
Ν	0.40881	2.36418	1.72005
Ν	-1.64023	1.26855	1.16873
Ν	-2.88485	1.27044	1.41177
Ν	-2.16117	4.26138	2.91097
С	-0.92455	2.32375	1.74342
С	-1.61031	3.38595	2.39417
С	-0.27824	-1.22716	3.00043
Н	0.26875	-0.31466	3.18444
С	-0.56382	-2.12447	4.01244
Н	-0.22712	-1.92199	5.02032
С	-1.29881	-3.26504	3.69319
Н	-1.54399	-3.99332	4.45721
С	-1.73673	-3.45537	2.39305
Н	-2.32948	-4.31667	2.13362
С	-1.41729	-2.52082	1.39686
С	-1.37795	-1.47249	-0.80636
С	-1.67123	-1.47624	-2.17204
Н	-1.32964	-0.68925	-2.83124
С	-2.41537	-2.51044	-2.71008
F	-2.71050	-2.48906	-4.02833
С	-2.88568	-3.57489	-1.95331
Н	-3.48148	-4.36474	-2.38702
С	-2.57155	-3.57322	-0.60927
F	-3.04749	-4.60943	0.12750
С	-1.81189	-2.56525	-0.00503
С	-0.46769	2.10926	-1.87757
Н	-1.29143	2.38070	-1.23624
С	-0.14920	2.85310	-2.99839
Н	-0.74834	3.71577	-3.25713
С	0.96176	2.47209	-3.74765
Н	1.25275	3.03499	-4.62669
С	1.70198	1.36756	-3.35893
Н	2.56858	1.06142	-3.92100
С	1.32317	0.62929	-2.22848

Table S9. Optimized ground-state Cartesian coordinates for 2a'.

С	1.32556	-1.19095	-0.60371
С	1.80690	-2.41297	-0.13344
Н	1.33932	-2.93106	0.69326
С	2.92582	-2.97860	-0.72016
F	3.39671	-4.14811	-0.23828
С	3.59655	-2.39172	-1.78443
Н	4.47509	-2.84222	-2.22310
С	3.08539	-1.20402	-2.26946
F	3.73841	-0.64218	-3.31730
С	1.95325	-0.58576	-1.72676
С	2.43059	1.54481	0.96478
С	3.33897	0.56975	1.42566
С	4.66785	0.63391	1.01072
Н	5.36352	-0.12197	1.35828
С	5.10933	1.65298	0.17441
Н	6.14144	1.68138	-0.15588
С	4.22365	2.64897	-0.21118
Н	4.57032	3.46608	-0.83504
С	2.88117	2.62901	0.18180
С	2.92400	-0.48305	2.41754
Н	2.57194	-0.01829	3.34356
Н	3.76513	-1.13236	2.66561
Н	2.12355	-1.10908	2.03365
С	2.00433	3.78787	-0.22578
Н	1.98172	4.54259	0.56475
Н	0.97318	3.49988	-0.40431
Н	2.39031	4.25525	-1.13420
С	-3.68548	0.20495	0.92360
С	-4.12739	0.14389	-0.40656
С	-4.95822	-0.91697	-0.77702
Н	-5.28897	-0.98639	-1.80764
С	-5.35884	-1.87329	0.14557
Н	-5.98691	-2.70000	-0.16542
С	-4.97511	-1.75020	1.47824
Н	-5.31708	-2.47387	2.21030
С	-4.16194	-0.69905	1.89449
С	-3.76579	1.20058	-1.41572
Н	-3.58309	2.16447	-0.93653
Н	-4.57546	1.33037	-2.13682
Н	-2.87349	0.91714	-1.97665

С	-3.81291	-0.50751	3.34759
Н	-2.73694	-0.53912	3.51954
Н	-4.27659	-1.27949	3.96410
Н	-4.15485	0.47181	3.69476
$\mathbf{P}.\mathbf{G}.=C_1$			

NIM = 0	NIm	=	0
---------	-----	---	---

Total electronic energy with ZPE = -2429.45836 a.u.