Organometallic ciprofloxacin conjugates with dual action: synthesis,

characterization, and antimicrobial and cytotoxicity studies

Łukasz Szczupak^{1,†}, Aleksandra Kowalczyk^{2,†}, Damian Trzybiński³, Krzysztof Woźniak³, Gracia Mendoza⁴, Manuel Arruebo^{4,5}, Dietmar Steverding⁶, Paweł Stączek^{2,*}, and Konrad Kowalski^{1,*}

¹Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12,
91-403 Łódź, Poland; kondor15@wp.pl and konrad.kowalski@chemia.uni.lodz.pl (K.K.);
lukasz.szczupak@chemia.uni.lodz.pl (Ł.S.)

² Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;

aleksandra.strzelczyk@biol.uni.lodz.pl (A.S.); pawel.staczek@biol.uni.lodz.pl (P.S.)

³Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw,

Żwirki i Wigury 101, 02-089 Warszawa, Poland; trzybinski@chem.uw.edu.pl (D.T.); kwozniak@chem.uw.edu.pl (K.W.)

⁴Department of Chemical Engineering., University of Zaragoza, Campus Río Ebro-Edificio I+D, C / Poeta Mariano Esquillor S / N, 5018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; arruebom@unizar.es (M.A.); gmmenc@unizar.es (G.M.)

⁵Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain

⁶Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; D.Steverding@uea.ac.uk (D.S.)

Supplementary Information

Table of contents

Fig. S1 ¹ H NMR of compound 1	S4
Fig. S2 ¹ H NMR of compound 2	S5
Fig. S3 ¹ H NMR of compound 3	S6
Fig. S4 ¹ H NMR of compound 4	S 7
Fig. S5 ¹ H NMR of compound 5	S 8
Fig. S6 ¹ H NMR of compound 6	S9
Fig. S7 Interactions of 4 in the crystal lattice	S10
Fig. S8 Interactions of 6 in the crystal lattice	S11
Fig. S9 Inhibition assay results for E. coli DNA gyrase (A) and S. aureus topoisomerase IV (B)	S12
Fig. S10 Chemical structure of Pp-Cym	S13
Table S1 Crystal and structure refinement data for 4 and 6	S14
Table S2 Bond lengths for 4	S15
Table S3 Valence angles for 4	S16
Table S4 Torsion angles for4	S18
Table S5 Bond lengths for6	S20
Table S6 Valence angles for 6	S21
Table S7 Torsion angles for 6	S23
Table S8 Hydrogen-bond geometry in the crystal of 4.	S25
Table S9 The geometry of π - π interactions in the crystal of 4.	S26
Table S10 The geometry of the C–F \cdots π contacts in the crystal of 4.	S27
Table S11 Hydrogen-bond geometry in the crystal of 6.	S28
Table S12 The geometry of the C–F \cdots π contacts in the crystal of 6.	S29
Table S13 The geometry of the C–F \cdots π contacts in the crystal of 6.	S 30

Fig. S1 ¹H NMR of compound 1(600 MHz, DMSO-d₆)

Fig. S2 ¹H NMR of compound 2 (600 MHz, DMSO-d₆)

Fig. S3 ¹H NMR of compound 3 (600 MHz, DMSO-d₆)

Fig. S4 ¹H NMR of compound 4 (600 MHz, DMSO-d₆)

Fig. S5 ¹H NMR of compound 5 (600 MHz, DMSO-d₆)

Fig. S6 ¹H NMR of compound 6 (600 MHz, DMSO-d₆)

Fig. S7 Interactions of **4** in the crystal lattice, viewed along *b*-direction. The C–H···O and C–H···F hydrogen bonds are represented by dashed lines, while the π - π and C–F··· π contacts by dotted lines. The H-atoms not involved in the intermolecular interactions have been omitted for clarity. Symmetry codes: (i) –*x* + 1, –*y*, –*z*; (ii) *x*, *y* +1, *z*; (iii) *x* – 1/2, *y* + 3/2, *z*; (iv) –*x* + 1, –*y* – 1, –*z*; (v) –*x* + 1, *y*, –*z* + 1/2.

Fig. S8 Interactions of **6** in the crystal lattice. The C–H…O and C–H…F hydrogen bonds are represented by dashed lines, while the π - π , C–F… π and C=O… π contacts by dotted lines. The H-atoms not involved in the intermolecular interactions have been omitted for clarity. Solvent accessible voids colored in yellow. Symmetry codes: (i) -x, -y - 1, -z + 1; (ii) -x, -y, -z + 1; (iii) x, y + 1, z; (iv) -x, y + 1/2, -z + 3/2.

Fig. S9 Inhibition assay results for *E. coli* DNA gyrase (**A**) and *S. aureus* topoisomerase IV (**B**) treated with six organometallic ciprofloxacin derivatives at the concentration of 50 μ M. [**A**: 1 – relaxed pBR322 – negative control; 2 – *E. coli* DNA gyrase – positive control; 3 – compound 4; 4 – compound 1; 5 – compound 5; 6 – compound 2; 7 – compound 6; 8 – compound 3; **B**: 1 –kinetoplast catenated DNA - negative control; 2 – *S. aureus* topoisomerase IV – positive control; 3 – compound 4; 4 – compound 1; 5 – compound 5; 6 – compound 2; 7 – compound 6; 8 – compound 3].

Identification code	4	6
Empirical formula	C ₃₀ H ₃₀ FFeN ₃ O ₄	C ₂₈ H ₂₅ FMnN ₃ O ₇
Formula weight	571.42	589.45
Temperature/K	100(2)	100(2)
Crystal system	monoclinic	monoclinic
Space group	C2/c	$P2_{1}/c$
a/Å	30.6129(10)	11.2786(5)
<i>b</i> /Å	10.5408(2)	7.2123(3)
$c/\text{\AA}$	15.8947(5)	34.7213(9)
$\alpha/^{\circ}$	90	90
$\beta/^{\circ}$	103.153(3)	93.113(3)
γ/°	90	90
Volume/Å ³	4994.4(3)	2820.24(18)
Ζ	8	4
$ ho_{ m calc} g/cm^3$	1.520	1.388
μ/mm^{-1}	5.278	4.294
<i>F</i> (000)	2384.0	1216.0
Crystal size/mm ³	$0.19 \times 0.11 \times 0.04$	$0.32 \times 0.14 \times 0.10$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	5.93 to 134.138	5.098 to 148.004
Index ranges	$-36 \le h \le 36, -12 \le k \le 12, -15 \le 12$	$\leq l - 14 \leq h \leq 13, -9 \leq k \leq 8, -42 \leq l \leq 14$
index ranges	≤ 18	43
Reflections collected	19631	44790
Independent reflections	4466 $[R_{int} = 0.0361, R_{sigma} = 0.0273]$	5669 [$R_{int} = 0.0590, R_{sigma} = 0.0352$]
Data/restraints/parameters	4466/166/346	5669/5/384
Goodness-of-fit on F^2	1.046	1.069
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0992$, w $R_2 = 0.2509$	$R_1 = 0.0755, wR_2 = 0.2055$
Final <i>R</i> indexes [all data]	$R_1 = 0.1076$, w $R_2 = 0.2579$	$R_1 = 0.0880, wR_2 = 0.2139$
Largest diff. peak/hole / e Å ⁻³	1.83/-1.34	0.84/-0.64

 Table S1 Crystal data and structure refinement details for 4 and 6.

Table S2 Bond lengths for 4.

Atom Atom	Length/Å	Atom Atom	Length/Å
Fe(39)C(30)	2.063(8)	C(9) C(8)	1.395(7)
Fe(39)C(29)	2.033(7)	C(9) C(10)	1.404(7)
Fe(39)C(33)	2.035(8)	C(13) C(12)	1.528(8)
Fe(39)C(31)	2.069(9)	O(28) C(27)	1.229(7)
Fe(39)C(32)	2.047(9)	C(7) C(8)	1.401(8)
Fe(39)C(36)	2.030(7)	C(7) C(6)	1.418(8)
Fe(39)C(35)	2.016(7)	C(4) C(10)	1.448(7)
Fe(39)C(34)	2.021(7)	C(10) C(5)	1.409(8)
Fe(39)C(38)	2.035(7)	C(6) C(5)	1.355(8)
Fe(39)C(37)	2.041(7)	C(30) C(29)	1.430(9)
F(24) C(6)	1.361(6)	C(30) C(31)	1.390(11)
O(21) C(20)	1.339(7)	C(17) C(18)	1.476(8)
O(23) C(4)	1.265(6)	C(17) C(19)	1.497(7)
O(22) C(20)	1.209(7)	C(15) C(16)	1.513(8)
N(1) C(9)	1.408(7)	C(18) C(19)	1.497(9)
N(1) C(2)	1.338(7)	C(27) C(29)	1.466(9)
N(1) C(17)	1.456(6)	C(27) C(26)	1.510(8)
N(14) C(13)	1.462(7)	C(29) C(33)	1.420(10)
N(14) C(15)	1.464(7)	C(33) C(32)	1.410(11)
N(14) C(25)	1.471(7)	C(31) C(32)	1.427(11)
N(11) C(7)	1.386(7)	C(25) C(26)	1.514(8)
N(11) C(12)	1.460(7)	C(36) C(35)	1.4182
N(11) C(16)	1.470(7)	C(36) C(37)	1.4180
C(3) C(2)	1.373(7)	C(35) C(34)	1.4180
C(3) C(20)	1.490(7)	C(34) C(38)	1.4187
C(3) C(4)	1.428(8)	C(38) C(37)	1.4187

 Table S3 Valence angles for 4.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C(30) Fe(39) C(31)	39.3(3)	O(22) C(20) O(21)	121.2(5)
C(29) Fe(39) C(30)	40.8(3)	O(22) C(20) C(3)	124.1(5)
C(29) Fe(39) C(33)	40.8(3)	N(11)C(7) C(8)	122.9(5)
C(29) Fe(39) C(31)	67.2(3)	N(11)C(7) C(6)	121.3(5)
C(29) Fe(39) C(32)	67.7(3)	C(8) C(7) C(6)	115.7(5)
C(29) Fe(39) C(38)	146.6(3)	O(23) C(4) C(3)	122.7(5)
C(29) Fe(39) C(37)	119.1(3)	O(23)C(4) C(10)	121.5(5)
C(33) Fe(39) C(30)	68.9(3)	C(3) C(4) C(10)	115.7(5)
C(33) Fe(39) C(31)	68.2(3)	C(9) C(8) C(7)	121.3(5)
C(33) Fe(39) C(32)	40.4(3)	C(9) C(10) C(4)	121.5(5)
C(33) Fe(39) C(37)	148.7(3)	C(9) C(10) C(5)	117.8(5)
C(32) Fe(39) C(30)	67.7(3)	C(5) C(10) C(4)	120.7(5)
C(32) Fe(39) C(31)	40.6(3)	F(24) C(6) C(7)	117.5(5)
C(36) Fe(39) C(30)	139.4(3)	C(5) C(6) F(24)	118.5(5)
C(36) Fe(39) C(29)	115.0(3)	C(5) C(6) C(7)	123.9(5)
C(36) Fe(39) C(33)	116.6(3)	C(29) C(30) Fe(39)	68.4(4)
C(36) Fe(39) C(31)	174.9(3)	C(31) C(30) Fe(39)	70.6(5)
C(36) Fe(39) C(32)	144.2(3)	C(31) C(30) C(29)	107.2(6)
C(36) Fe(39) C(38)	68.75(16)	N(11)C(12)C(13)	109.2(5)
C(36) Fe(39) C(37)	40.78(13)	N(1) C(17) C(18)	119.1(5)
C(35) Fe(39) C(30)	177.7(3)	N(1) C(17) C(19)	118.9(5)
C(35) Fe(39) C(29)	137.2(3)	C(18) C(17) C(19)	60.5(4)
C(35) Fe(39) C(33)	108.9(3)	C(6) C(5) C(10)	120.0(5)
C(35) Fe(39) C(31)	140.6(3)	N(14) C(15) C(16)	111.0(5)
C(35) Fe(39) C(32)	110.9(3)	C(17) C(18) C(19)	60.5(4)
C(35) Fe(39) C(36)	41.04(13)	O(28) C(27) C(29)	121.9(6)
C(35) Fe(39) C(34)	41.13(13)	O(28) C(27) C(26)	121.3(6)
C(35) Fe(39) C(38)	68.99(16)	C(29) C(27) C(26)	116.7(5)
C(35) Fe(39) C(37)	68.88(17)	C(30) C(29) Fe(39)	70.7(4)
C(34) Fe(39) C(30)	140.6(3)	C(30) C(29) C(27)	124.0(6)
C(34) Fe(39) C(29)	171.7(3)	C(27) C(29) Fe(39)	119.5(5)
C(34) Fe(39) C(33)	131.1(3)	C(33) C(29) Fe(39)	69.7(4)
C(34) Fe(39) $C(31)$	109.5(3)	C(33) C(29) C(30)	108.9(6)
C(34) Fe(39) C(32)	104.7(3)	C(33) C(29) C(27)	126.6(6)
C(34) Fe(39) C(36)	69.03(16)	N(11)C(16)C(15)	110.4(5)
C(34) Fe(39) C(38)	40.94(12)	C(17) C(19) C(18)	59.0(4)
C(34) Fe(39) C(37)	68.82(16)	C(29) C(33) Fe(39)	69.5(4)
C(38) Fe(39) C(30)	113.3(3)	C(32) C(33) Fe(39)	70.2(5)
C(38) Fe(39) C(33)	169.9(3)	C(32) C(33) C(29)	106.8(6)
C(38) Fe(39) C(31)	106.8(3)	C(30) C(31) Fe(39)	70.1(5)
C(38) Fe(39) C(32)	130.2(3)	C(30) C(31) C(32)	108.7(7)
C(38) Fe(39) C(37)	40.74(12)	C(32) C(31) Fe(39)	68.9(5)
C(37) Fe(39) C(30)	112.8(3)	N(14) C(25) C(26)	114.2(5)
C(37) Fe(39) C(31)	134.2(3)	C(27) C(26) C(25)	114.9(5)
C(37) Fe(39) C(32)	170.8(3)	C(33) C(32) Fe(39)	69.4(5)
C(9) N(1) C(17)	119.7(4)	C(33) C(32) C(31)	108.3(7)

C(2) N(1) C(9)	120.5(4) C(31) C(32) Fe(39)	70.6(5)
C(2) N(1) C(17)	119.7(4) C(35) C(36) Fe(39)	69.0(3)
C(13) N(14) C(15)	108.0(4) C(37) C(36) Fe(39)	70.0(3)
C(13) N(14) C(25)	108.8(4) C(37) C(36) C(35)	108.0
C(15) N(14) C(25)	109.9(5) C(36) C(35) Fe(39)	70.0(3)
C(7) N(11) C(12)	118.1(4) C(34) C(35) Fe(39)	69.6(3)
C(7) N(11) C(16)	119.3(4) C(34) C(35) C(36)	108.0
C(12) N(11) C(16)	109.5(4) C(35) C(34) Fe(39)	69.3(3)
C(2) C(3) C(20)	117.8(5) C(35) C(34) C(38)	108.0
C(2) C(3) C(4)	120.5(5) C(38) C(34) Fe(39)	70.1(3)
C(4) C(3) C(20)	121.7(5) C(34) C(38) Fe(39)	69.0(3)
C(8) C(9) N(1)	120.3(5) C(37) C(38) Fe(39)	69.8(3)
C(8) C(9) C(10)	121.2(5) C(37) C(38) C(34)	108.0
C(10) C(9) N(1)	118.5(5) C(36) C(37) Fe(39)	69.2(3)
N(1) C(2) C(3)	123.1(5) C(36) C(37) C(38)	108.0
N(14)C(13) C(12)	111.1(4) C(38) C(37) Fe(39)	69.4(3)
O(21) C(20) C(3)	114.7(5)	

 Table S4 Torsion angles for 4.

A B C D	Angle/°	Α	В	С	D	Angle/°
Fe(39) C(30) C(29) C(27)	-113.1(7)	C(4)	C(3)	C(2)	N(1)	2.2(8)
Fe(39) C(30) C(29) C(33)	59.4(6)	C(4)	C(3)	C(20)	O(21)	8.2(7)
Fe(39) C(30) C(31) C(32)	-58.2(6)	C(4)	C(3)	C(20)	O(22)	-171.7(5)
Fe(39) C(29) C(33) C(32)	60.6(6)	C(4)	C(10)) C(5)	C(6)	178.8(5)
Fe(39) C(33) C(32) C(31)	60.0(6)	C(8)	C(9)	C(10)	C(4)	177.6(5)
Fe(39) C(31) C(32) C(33)	-59.3(6)	C(8)	C(9)	C(10)	C(5)	-3.3(7)
Fe(39) C(36) C(35) C(34)	-59.4(3)	C(8)	C(7)	C(6)	F(24)	174.1(4)
Fe(39) C(36) C(37) C(38)	58.8(3)	C(8)	C(7)	C(6)	C(5)	-2.6(8)
Fe(39) C(35) C(34) C(38)	-59.6(3)	C(10)C(9)	C(8)	C(7)	4.0(8)
Fe(39) C(34) C(38) C(37)	-59.1(3)	C(6)	C(7)	C(8)	C(9)	-1.1(7)
Fe(39) C(38) C(37) C(36)	-58.6(3)	C(30)) C(29)) C(33)	Fe(39)	-60.1(5)
F(24) C(6) C(5) C(10)	-173.4(5)	C(30) C(29)) C(33)	C(32)	0.6(9)
O(23) C(4) C(10) C(9)	-176.2(5)	C(30)C(31)) C(32)	Fe(39)	58.9(6)
O(23) C(4) C(10) C(5)	4.8(7)	C(30)C(31)) C(32)	C(33)	-0.3(10)
N(1) C(9) C(8) C(7)	-177.6(5)	C(12)N(11))C(7)	C(8)	-7.9(8)
N(1) C(9) C(10)C(4)	-0.8(7)	C(12)N(11))C(7)	C(6)	167.2(5)
N(1) C(9) C(10)C(5)	178.3(4)	C(12)N(11))C(16)	C(15)	-58.3(6)
N(1) C(17) C(18) C(19)	-108.7(5)	C(17)N(1)	C(9)	C(8)	-2.3(7)
N(1) C(17) C(19) C(18)	109.1(6)	C(17)N(1)	C(9)	C(10)	176.1(4)
N(14) C(13) C(12) N(11)	-60.4(6)	C(17)N(1)	C(2)	C(3)	-176.8(5)
N(14) C(15) C(16) N(11)	58.9(6)	C(15)N(14))C(13)	C(12)	59.5(6)
N(14) C(25) C(26) C(27)	-93.3(6)	C(15)N(14)) C(25)	C(26)	-78.4(6)
N(11) C(7) C(8) C(9)	174.3(5)	C(27) C(29)) C(33)	Fe(39)	112.3(7)
N(11) C(7) C(6) F(24)	-1.4(8)	C(27) C(29)) C(33)	C(32)	172.9(7)
N(11) C(7) C(6) C(5)	-178.1(5)	C(29)C(30)) C(31)	Fe(39)	58.9(6)
C(3) $C(4)$ $C(10)C(9)$	3.5(7)	C(29) C(30)) C(31)	C(32)	0.7(10)
C(3) $C(4)$ $C(10)C(5)$	-175.5(5)	C(29)C(27)) C(26)	C(25)	-171.9(6)
C(9) N(1) C(2) C(3)	0.8(7)	C(29)C(33)) C(32)	Fe(39)	-60.2(6)
C(9) N(1) C(17)C(18)	139.2(5)	C(29)C(33)) C(32)	C(31)	-0.1(10)
C(9) N(1) C(17)C(19)	68.9(6)	C(16)N(11))C(7)	C(8)	129.4(6)
C(9) $C(10) C(5) C(6)$	-0.3(7)	C(16)N(11))C(7)	C(6)	-55.5(7)
C(2) N(1) C(9) C(8)	-179.9(5)	C(16))N(11))C(12)	C(13)	58.4(6)
C(2) N(1) C(9) C(10)	-1.5(7)	C(31))C(30)) C(29)	Fe(39)	-60.2(6)
C(2) N(1) $C(17)C(18)$	-43.1(7)	C(31)) C(30)) C(29)	C(27)	-173.4(7)
C(2) N(1) $C(17)C(19)$	-113.5(6)	C(31)) C(30)) C(29)	C(33)	-0.8(9)
C(2) C(3) C(20)O(21)	-170.4(5)	C(25))N(14)C(13)	C(12)	178.7(5)
C(2) C(3) C(20)O(22)	9.7(8)	C(25)N(14))C(15)	C(16)	-177.2(5)
C(2) C(3) C(4) O(23)	175.5(5)	C(26))C(27)) C(29)	Fe(39)	84.7(6)
C(2) C(3) C(4) C(10)	-4.2(7)	C(26))C(27)) C(29)	C(30)	170.3(7)
C(13) N(14)C(15)C(16)	-58.6(6)	C(26))C(27)) C(29)	C(33)	-0.9(10)
C(13) N(14)C(25)C(26)	163.5(5)	C(36)C(35)) C(34)	Fe(39)	59.7(3)
O(28) C(27) C(29) Fe(39)	-94.1(7)	C(36)C(35)) C(34)	C(38)	0.0
O(28) C(27) C(29) C(30)	-8.5(11)	C(35)C(36)) C(37)	Fe(39)	-58.7(3)
O(28) C(27) C(29) C(33)	-179.7(7)	C(35)C(36)) C(37)	C(38)	0.0
O(28) C(27) C(26) C(25)	6.9(8)	C(35)C(34)) C(38)	Fe(39)	59.1(3)
C(20) C(3) C(2) N(1)	-179.2(4)	C(35)C(34)) C(38)	C(37)	0.0

C(20) C(3) C(4) O(23)	-3.1(8) C(34) C(38) C(37) Fe(39)	58.6(3)
C(20) C(3) C(4) C(10)	177.2(4) C(34) C(38) C(37) C(36)	0.0
C(7) N(11)C(12)C(13)	-160.5(5) C(37)C(36)C(35)Fe(39)	59.4(3)
C(7) N(11) C(16) C(15)	161.1(5) C(37)C(36)C(35)C(34)	0.0
C(7) C(6) C(5) C(10)	3.3(8)	

Table S5 Bond lengths for 6.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C(2)	C(3)	1.353(6)	C(17B)	N(1)	1.509(10)
C(2)	N(1)	1.345(5)	C(18)	C(19A)	1.590(8)
C(3)	C(4)	1.432(5)	C(18)	C(19B)	1.567(10)
C(3)	C(20)	1.482(5)	C(20)	O(21)	1.319(5)
C(4)	C(10)	1.447(5)	C(20)	O(22)	1.212(5)
C(4)	O(23)	1.259(5)	C(25)	C(26)	1.526(6)
C(5)	C(6)	1.354(5)	C(25)	N(14)	1.470(6)
C(5)	C(10)	1.407(5)	C(26)	C(27)	1.501(6)
C(6)	C(7)	1.408(6)	C(27)	C(29)	1.498(7)
C(6)	F(24)	1.365(4)	C(27)	O(28)	1.198(8)
C(7)	C(8)	1.388(5)	C(29)	C(30)	1.403(8)
C(7)	N(11)	1.395(5)	C(29)	C(33)	1.427(6)
C(8)	C(9)	1.396(5)	C(29)	Mn(40)	2.118(5)
C(9)	C(10)	1.392(5)	C(30)	C(31)	1.425(6)
C(9)	N(1)	1.398(5)	C(30)	Mn(40)	2.139(5)
C(12)	C(13)	1.521(6)	C(31)	C(32)	1.389(9)
C(12)	N(11)	1.448(5)	C(31)	Mn(40)	2.142(6)
C(13)	N(14)	1.460(6)	C(32)	C(33)	1.412(9)
C(15)	C(16)	1.516(6)	C(32)	Mn(40)	2.135(6)
C(15)	N(14)	1.454(6)	C(33)	Mn(40)	2.114(6)
C(16)	N(11)	1.480(5)	C(34)	Mn(40)	1.773(7)
C(17A)	C(18)	1.448(8)	C(34)	O(35)	1.152(8)
C(17A)	C(19A)	1.483(12)	C(36)	Mn(40)	1.793(5)
C(17A)	N(1)	1.492(8)	C(36)	O(37)	1.160(6)
C(17B)	C(18)	1.395(10)	C(38)	Mn(40)	1.797(4)
<u>C(17B)</u>	C(19B)	1.502(13)	C(38)	O(39)	1.147(5)

 Table S6 Valence angles for 6.

Atom	Atom	Atom	Angle/°	Atom Atom	Atom	Angle/°
N(1)	C(2)	C(3)	124.4(4)	C(30) C(31)	Mn(40)	70.4(3)
C(2)	C(3)	C(4)	119.4(3)	C(32) C(31)	C(30)	107.5(5)
C(2)	C(3)	C(20)	119.4(3)	C(32) C(31)	Mn(40)	70.8(4)
C(4)	C(3)	C(20)	121.2(4)	C(31) C(32)	C(33)	109.2(4)
C(3)	C(4)	C(10)	116.2(3)	C(31) C(32)	Mn(40)	71.3(3)
O(23)	C(4)	C(3)	122.5(3)	C(33) C(32)	Mn(40)	69.8(4)
O(23)	C(4)	C(10)	121.3(3)	C(29) C(33)	Mn(40)	70.5(3)
C(6)	C(5)	C(10)	120.0(3)	C(32) C(33)	C(29)	107.2(6)
C(5)	C(6)	C(7)	123.5(3)	C(32) C(33)	Mn(40)	71.4(3)
C(5)	C(6)	F(24)	118.2(3)	O(35)C(34)	Mn(40)	179.0(8)
F(24)	C(6)	C(7)	118.3(3)	O(37)C(36)	Mn(40)	178.7(4)
C(8)	C(7)	C(6)	116.0(3)	O(39)C(38)	Mn(40)	177.7(6)
C(8)	C(7)	N(11)	$122\ 2(3)$	C(29) Mn(40)	C(30)	38.5(2)
N(11)	C(7)	C(6)	121.6(3)	C(29) Mn(40)	C(31)	65 1(2)
C(7)	C(8)	C(9)	121.0(0)	C(29) Mn(40)	C(32)	64 99(19)
C(8)	C(9)	N(1)	120.7(1)	C(30) Mn(40)	C(31)	38 89(16)
C(10)	C(9)	C(8)	120.5(3)	C(32) Mn(40)	C(30)	64 2(2)
C(10)	C(9)	N(1)	120.0(3) 118 9(3)	C(32) Mn(40)	C(31)	37.9(2)
C(10)	C(10)	$\Gamma(1)$	120.6(3)	C(32) Mn(40)	C(29)	39.40(18)
C(0)	C(10)	C(4)	120.0(3) 121.3(3)	C(33) Mn(40)	C(20)	65 0(3)
C(9)	C(10)	C(4)	121.3(3) 118 1(3)	C(33) Mn(40)	C(30)	64.9(3)
$\mathcal{O}(3)$ $\mathcal{N}(11)$	C(10)	C(3)	110.1(3) 110.2(4)	C(33) Mn(40)	C(31)	04.9(3)
N(11) N(14)	C(12) C(12)	C(13)	110.2(4)	C(33) MII(40) C(34) Mp(40)	C(32)	56.6(2)
N(14) N(14)	C(15)	C(12)	112.3(3)	C(34) Mm(40) C(24) Mm(40)	C(29)	97.3(3)
N(14) N(11)	C(15)	C(16)	111.3(4)	C(34) Mn(40) C(24) Mr(40)	C(30)	152.8(2)
N(11) C(19)	C(10)	C(13)	108.2(4)	C(34) Mn(40) C(24) Mn(40)	C(31)	130.4(3) 121.5(2)
C(18)	C(17A)	$\mathcal{N}(1)$	03.7(3)	C(34) MII(40) C(24) Mar(40)	C(32)	121.3(3)
C(18)	C(17A)	N(1)	11/.4(0)	C(34) Mn(40)	C(33)	91.5(3)
C(19A)	C(1/A)	N(1)	111.2(8)	C(34) Mn(40)	C(36)	92.7(3)
C(18)	C(1/B)	$\mathcal{L}(19B)$	65.4(6)	C(34) Mn(40)	C(38)	92.1(2)
C(18)	C(1/B)	N(1)	119.8(8)	C(36) Mn(40)	C(29)	111.58(18)
C(19B)	C(T/B)) N(1)	109.8(9)	C(36) Mn(40)	C(30)	91.7(2)
C(1/A))C(18)	C(19A)	58.2(4)	C(36) Mn(40)	C(31)	108.2(2)
C(17B)	C(18)	C(19B)	60.6(5)	C(36) Mn(40)	C(32)	145.7(2)
C(17A))C(19A))C(18)	56.1(4)	C(36) Mn(40)	C(33)	151.0(2)
C(17B)	C(19B)	C(18)	54.0(5)	C(36) Mn(40)	C(38)	93.1(2)
O(21)	C(20)	C(3)	115.4(4)	C(38) Mn(40)	C(29)	152.9(2)
O(22)	C(20)	C(3)	123.6(4)	C(38) Mn(40)	C(30)	134.6(2)
O(22)	C(20)	O(21)	120.8(4)	C(38) Mn(40)	C(31)	97.5(2)
N(14)	C(25)	C(26)	113.2(5)	C(38) Mn(40)	C(32)	88.4(2)
C(27)	C(26)	C(25)	113.1(5)	C(38) Mn(40)	C(33)	115.4(2)
C(29)	C(27)	C(26)	116.7(5)	C(2) N(1)	C(9)	119.7(3)
O(28)	C(27)	C(26)	122.0(5)	C(2) N(1)	C(17A)	118.8(4)
O(28)	C(27)	C(29)	121.3(4)	C(2) N(1)	C(17B)	120.5(4)
C(27)	C(29)	Mn(40)	125.0(4)	C(9) N(1)	C(17A)	118.5(4)
C(30)	C(29)	C(27)	130.2(4)	C(9) N(1)	C(17B)	116.2(4)
C(30)	C(29)	C(33)	107.7(5)	C(7) N(11)	C(12)	118.4(3)
C(30)	C(29)	Mn(40)	71.6(3)	C(7) N(11)	C(16)	116.8(4)

C(33)	C(29)	C(27)	122.1(5) C(12) N(11)	C(16)	110.2(4)
C(33)	C(29)	Mn(40)	70.1(3) C(13) N(14)	C(25)	108.8(4)
C(29)	C(30)	C(31)	108.3(5) C(15) N(14)	C(13)	108.0(4)
C(29)	C(30)	Mn(40)	70.0(3) C(15) N(14)	C(25)	111.2(4)
C(31)	C(30)	Mn(40)	70.7(3)		

 Table S7 Torsion angles for 6.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C(2)	C(3)	C(4)	C(10)	0.4(7)	C(20)	C(3)	C(4)	C(10)	-178.0(4)
C(2)	C(3)	C(4)	O(23)	179.3(5)	C(20)	C(3)	C(4)	O(23)	0.9(7)
C(2)	C(3)	C(20)) O(21)	-170.2(5)	C(25)	C(26)	C(27)	C(29)	-174.8(5)
C(2)	C(3)	C(20)) O(22)	6.8(8)	C(25)	C(26)	C(27)	O(28)	2.8(9)
C(3)	C(2)	N(1)	C(9)	0.1(9)	C(26)	C(25)	N(14)	C(13)	176.4(5)
C(3)	C(2)	N(1)	C(17A)	-159.9(7)	C(26)	C(25)	N(14)	C(15)	-64.8(6)
C(3)	C(2)	N(1)	C(17B)	158.2(7)	C(26)	C(27)	C(29)	C(30)	-0.4(9)
C(3)	C(4)	C(10)) C(5)	-179.6(4)	C(26)	C(27)	C(29)	C(33)	177.5(6)
C(3)	C(4)	C(10)) C(9)	-0.4(7)	C(26)	C(27)	C(29)	Mn(40)	-95.4(6)
C(4)	C(3)	C(20)) O(21)	8.1(7)	C(27)	C(29)	C(30)	C(31)	178.8(6)
C(4)	C(3)	C(20)) O(22)	-174.9(5)	C(27)	C(29)	C(30)	Mn(40)	-120.7(6)
C(5)	C(6)	C(7)	C(8)	-1.6(8)	C(27)	C(29)	C(33)	C(32)	-178.1(6)
C(5)	C(6)	C(7)	N(11)	-177.1(5)	C(27)	C(29)	C(33)	Mn(40)	119.6(6)
C(6)	C(5)	C(10)) C(4)	178.5(4)	C(29)	C(30)	C(31)	C(32)	-1.3(6)
C(6)	C(5)	C(10)) C(9)	-0.7(7)	C(29)	C(30)	C(31)	Mn(40)	60.1(4)
C(6)	C(7)	C(8)	C(9)	-1.5(8)	C(30)	C(29)	C(33)	C(32)	0.2(8)
C(6)	C(7)	N(11)C(12)	169.9(5)	C(30)	C(29)	C(33)	Mn(40)	-62.1(4)
C(6)	C(7)	N(11) C(16)	-54.5(7)	C(30)	C(31)	C(32)	C(33)	1.4(7)
C(7)	C(8)	C(9)	C(10)	3.5(8)	C(30)	C(31)	C(32)	Mn(40)	61.2(4)
C(7)	C(8)	C(9)	N(1)	-178.5(5)	C(31)	C(32)	C(33)	C(29)	-1.0(8)
C(8)	C(7)	N(11	C(12)	-5.4(8)	C(31)	C(32)	C(33)	Mn(40)	60.7(5)
C(8)	C(7)	N(11)C(16)	130.3(5)	C(33)	C(29)	C(30)	C(31)	0.6(7)
C(8)	C(9)	C(10)) C(4)	178.5(5)	C(33)	C(29)	C(30)	Mn(40)	61.2(4)
C(8)	C(9)	C(10)) C(5)	-2.3(7)	F(24)	C(6)	C(7)	C(8)	176.8(5)
C(8)	C(9)	N(1)	C(2)	-178.3(5)	F(24)	C(6)	C(7)	N(11)	1.3(7)
C(8)	C(9)	N(1)	C(17A)	-18.2(8)	Mn(40	C(29)	C(30)	C(31)	-60.5(4)
C(8)	C(9)	N(1)	C(17B)	22.8(8)	Mn(40)C(29)	C(33)	C(32)	62.3(5)
C(10)	C(5)	C(6)	C(7)	2.7(8)	Mn(40)C(30)	C(31)	C(32)	-61.4(4)
C(10)	C(5)	C(6)	F(24)	-175.7(4)	Mn(40)C(31)	C(32)	C(33)	-59.7(5)
C(10)	C(9)	N(1)	C(2)	-0.2(8)	Mn(40	C(32)	C(33)	C(29)	-61.7(5)
C(10)	C(9)	N(1)	C(17A)	159.9(6)	N(1)	C(2)	C(3)	C(4)	-0.2(8)
C(10)	C(9)	N(1)	C(17B)	-159.1(6)	N(1)	C(2)	C(3)	C(20)	178.1(5)
C(12)	C(13)	N(14)C(15)	56.8(6)	N(1)	C(9)	C(10)	C(4)	0.4(7)
C(12)	C(13)	N(14) C(25)	177.6(5)	N(1)	C(9)	C(10)	C(5)	179.6(4)
C(13)	C(12)	N(11) C(7)	-164.6(5)	N(1)	C(17A	C(18)	C(19A)	-102.3(9)
C(13)	C(12)	N(11)C(16)	57.1(6)	N(1)	C(17A)C(19A)C(18)	111.5(6)
C(15)	C(16)	N(11) C(7)	161.6(4)	N(1)	C(17B) C(18)	C(19B)	99.6(11)
C(15)	C(16)	N(11)C(12)	-59.3(6)	N(1)	C(17B) C(19B) C(18)	-114.6(8)
C(16)	C(15)	N(14) C(13)	-59.8(6)	N(11)	C(7)	C(8)	C(9)	174.0(5)
C(16)	C(15)	N(14) C(25)	-179.1(4)	N(11)	C(12)	C(13)	N(14)	-56.6(6)
C(18)	C(17A)N(1)	C(2)	-50.7(10)	N(14)	C(15)	C(16)	N(11)	61.5(6)
C(18)	C(17A)N(1)	C(9)	149.0(6)	N(14)	C(25)	C(26)	C(27)	-172.7(5)
C(18)	C(17B) N(1)	C(2)	40.6(11)	0(23)	C(4)	C(10)	C(5)	1.4(7)
C(18)	C(17B) N(1)	C(9)	-160.7(7)	O(23)	C(4)	C(10)	C(9)	-179.4(4)
C(19A)C(17A)N(1)	C(2)	-123.5(6)	O(28)	C(27)	C(29)	C(30)	-178.0(6)
C(19A) C(17A)N(1)	C(9)	76.2(7)	O(28)	C(27)	C(29)	C(33)	-0.1(10)
C(19B) C(17B) N(1)	C(2)	112.9(8)	O(28)	C(27)	C(29)	Mn(40)	87.0(7)

C(19B) C(17B) N(1) C(9)

-88.4(8)

 Table S8 Hydrogen-bond geometry in the crystal of 4.

D –H···A	d(D–H) (Å)	d(H…A) Å	d(D…A) Å	<d-h…a (°)<="" th=""></d-h…a>
O21-H21···O23*	0.82(5)	1.81(7)	2.534(6)	146(9)
C2-H2···O22*	0.93	2.51	2.823(7)	100
$C2-H2\cdots O28^{i}$	0.93	2.46	3.206(7)	137
С13-Н13В…О23 ^{іі}	0.97	2.45	3.341(7)	152
C16-H16A…F24*	0.97	2.26	2.909(6)	124
C25-H25AO28*	0.97	2.45	2.808(8)	102
C34–H34…O22 ⁱⁱⁱ	0.98	2.54	3.454(8)	156
C37–H37…F24 ⁱⁱ	0.93	2.40	3.262(7)	154

Symmetry codes: (i) -x + 1, -y, -z; (ii) x, y + 1, z; (iii) x - 1/2, y + 3/2, z; (*) intramolecular interaction.

CgI	CgJ	CgI⋯CgJ (Å)	Dihedral angle (°)	Interplanar distance (Å)	Offset (Å)
4	4 ^{iv}	3.530(3)	0	3.363(2)	1.073(3)
4	6 ^{iv}	3.739(3)	2.5(2)	3.366(2)	1.628(3)
6	4 ^{iv}	3.740(3)	2.5(2)	3.408(2)	1.540(3)
6	6 ^v	3.756(3)	13	3.576(2)	1.149(3)

Table S9 The geometry of π - π interactions in the crystal of 4.

Cg4 and Cg6 denote geometric centers of aromatic rings delineated by the N1/C2–C4/C10–C9 and C5–C10 atoms, respectively. Symmetry codes: (iv) -x + 1, -y - 1, -z; (v) -x + 1, y, -z + 1/2.

Table S10 The geometry of the C–F \cdots π contacts in the crystal of **4**.

D-X	CgI	d(X···CgI) (Å)	<y-x…<i>CgI (°)</y-x…<i>	
C6-F24	4 ^v	3.500(4)	103.0(3)	
C6-F24	6 ^v	3.811(4)	70.2(3)	

*Cg*4 and *Cg*6 denote geometric centers of aromatic rings delineated by the N1/C2–C4/C10–C9 and C5–C10 atoms, respectively. Symmetry code: (v) -x + 1, y, -z + 1/2.

 Table S11 Hydrogen-bond geometry in the crystal of 6.

D -H···A	d(D-H) (Å)	d(H…A) Å	d(D…A) Å	<d-h···a (°)<="" th=""></d-h···a>
O21-H21···O23*	0.82(6)	1.74(6)	2.529(5)	162(8)
С2-Н2…О22*	0.93	2.50	2.825(6)	100
C5-H5O23 ⁱ	0.93	2.27	3.127(5)	153
C13–H13A····O21 ⁱⁱ	0.97	2.50	3.396(6)	154
C16-H16A…F24*	0.97	2.18	2.860(5)	126
С19А-Н19А…О23ііі	0.97	2.51	3.264(10)	135

Symmetry codes: (i) -x, -y - 1, -z + 1; (ii) -x, -y, -z + 1; (iii) x, y + 1, z; (*) intramolecular interaction.

CgI	CgJ	CgI…CgJ (Å)	Dihedral angle (°)	Interplanar distance (Å)	Offset (Å)
4	6 ⁱⁱ	3.651(2)	0.9(2)	3.421(2)	1.275(2)
6	4 ⁱⁱ	3.651(2)	0.9(2)	3.440(2)	1.223(2)
6	6 ⁱⁱ	3.874(2)	0	3.437(2)	1.787(2)

Table S12 The geometry of π - π interactions in the crystal of **6**.

*Cg*4 and *Cg*6 denote geometric centers of aromatic rings delineated by the N1/C2–C4/C10–C9 and C5–C10 atoms, respectively. Symmetry code: (ii) -x, -y, -z + 1.

Table S13 The geometry of the C–F \cdots π contacts in the crystal of 6.

D-X	CgI	d(X⋯ <i>Cg</i> I) (Å)	<y-x…cgi (°)<="" th=""><th></th></y-x…cgi>	
C6-F24	4 ⁱⁱ	3.659(3)	69.3(2)	
C36-O37	6^{iv}	3.779(4)	96.3(3)	
C38–O39	4 ^{iv}	3.153(4)	122.0(4)	

*Cg*4 and *Cg*6 denote geometric centers of aromatic rings delineated by the N1/C2–C4/C10–C9 and C5–C10 atoms, respectively. Symmetry codes: (ii) -x, -y, -z + 1; (iv) -x, y + 1/2, -z + 3/2.