Supporting Information

Synthesis and Characterization of a New Organic-inorganic Hybrid Ferroelectric: $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}\right)_{6}\left[\mathrm{InBr}_{6}\right]\left[\mathrm{InBr}_{4}\right]_{3} \cdot \mathbf{H}_{\mathbf{2}} \mathrm{O}$
Wen-Bo Xin, Guan-Cheng Xu*, Min Li

1. Methods.
2. IR Characterization.
3. TG Characterization.
4. PXRD Characterization.
5. DSC Characterization.
6. Selected bond lengths (\AA) and bond angles $\left(^{\circ}\right)$ for compound $\mathbf{1}$.

1. Methods

DSC, TG, XRD: DSC measurements were conducted by a Netzsch 200F3 instrument under nitrogen atmosphere, upon cooling and heating the samples of 4.23 mg in the temperature range in $200-270 \mathrm{~K}$ with a 10 $\mathrm{K} /$ min scanning rate in aluminum crucibles. Thermogravimetric (TG) measurement was carried out by a Netzsch STA 449F3 thermogravimetric instrument at a heating rate of $10 \mathrm{~K} / \mathrm{min}$ in an air atmosphere. The powder X-Ray diffraction (PXRD) pattern was obtained on Rigaku SmatrLab SE advance diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation (λ $=1.54056 \AA$) in the range of $5^{\circ}<2 \theta<50^{\circ}$.

Elemental analysis, IR: Elemental analyzed with the Elementar Vario EL cube analyzer. The FT-IR spectrum was obtained using a Bruker Vertex 70 spectrophotometer within the range of $4000-400 \mathrm{~cm}^{-1}$. The sample was diluted with spectroscopic KBr and pressed into a slice.

Dielectric, Ferroelectric Measurements: The complex electric permittivity ε was measured on a TH2828 Precision LCR meter with the frequencies of $10 \mathrm{kHz}, 100 \mathrm{kHz}$, and 1 MHz , an applied voltage of 1.0 V , and a temperature sweeping rate of approximately $2 \mathrm{~K} / \mathrm{min}$. Crystals of the compound were ground and pressed into dense pellets at around 14 MPa . The capacitor was made by painting two faces of the tablet piece with silver conducting paste and using gold wires as the electrodes. After being dried by silica gel for two days, the capacitor was detected under a
microscope with a Phenix CCD eye and the corresponding software. The crystals of ferroelectric hysteresis loops were performed by the SawyerTower circuit method. The samples were made with single-crystals cut into the form of thin plate perpendicular to the crystal c-axis. Silver conductive paste deposited on the plate surfaces was used as the electrodes. The thickness $(0.33 \mathrm{~mm})$ and area $\left(3.17 \mathrm{~mm}^{2}\right)$ of the crystals were accurately measured using the optical microscope. The frequency and amplitude of the applied voltage were 50 Hz and 250 V , respectively. The P-E hysteresis loops were recorded on a Precision LC, Premier II (Radiant Technologies, Inc.).

Crystallography: The variable-temperature single-crystal X-ray diffraction data for compound 1 at room temperature (300 K) and low temperature (150 K) were demonstrated by a Agilent SuperNova Dual Atlasdiffractometer equipped with a graphite-monochromated $\mathrm{Cu}-\mathrm{K} a$ radiation $(\lambda=0.71073 \AA)$. The crystal structures of RTP and LTP were solved by OLEX2 soft package direct methods. The structure was refined by SHELXL-97 software package according to the full-matrix method of F^{2}. The anisotropy of all non-hydrogen atoms was refined by the total reflections method of $I>2 s(I)$, the position of all hydrogen atoms in the graph was further refined by differential fourier.

2. IR Characterization.

Figure S1. IR spectrum of compound 1.

3. TG Characterization

Fig. S2 The TG curves of compound $\mathbf{1}$ with a heating rate of $10 \mathrm{~K} / \mathrm{min}$.

4. PXRD Characterization

Fig. S3 PXRD pattern of compound 1.

5. DSC Characterization.

Fig. S4 DSC curves of compound $\mathbf{1}$ obtained in a heating-cooling mode at $8 \mathrm{~K} / \mathrm{min}$, $5 \mathrm{~K} / \mathrm{min}, 2 \mathrm{~K} / \mathrm{min}$, respectively.

6. Table. S1 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for

compound 1 at 300 K and 150 K .

300 K			
In2-Br6	2.409(10)	Br5A-In2-Br6 ${ }^{\text {a }}$	100.2(3)
In2-Br7	2.430(11)	Br5A-In2-Br7 ${ }^{\text {a }}$	100.4(3)
In2-Br8	2.354(7)	Br5A-In2-Br8 ${ }^{\text {a }}$	103.1(3)
In2- $\mathrm{Br}^{\text {a }}$	2.778 (6)	Br6A-In2- $\mathrm{Br}{ }^{\text {a }}$	112.4(4)
In2- $\mathrm{Br}^{\text {a }}$	2.409(10)	Br6A-In2-Br8 ${ }^{\text {a }}$	119.6(4)
In2- $\mathrm{Br}^{\text {a }}$	2.430 (11)	Br7A-In2-Br8 ${ }^{\text {a }}$	116.9(4)
In2-Br8 ${ }^{\text {a }}$	2.354(7)	Br5-In2-Br6	100.2(3)
In2-Br5	2.778(6)	Br5-In2-Br7	100.4(3)
In3-Br10	2.664(2)	Br5-In2-Br8	103.1(3)
In3-Br11	2.647(2)	Br5-In2-Br5 ${ }^{\text {a }}$	177.3(3)
In3-Br9 ${ }^{\text {b }}$	2.685(2)	C1-C2	1.48(5)
In3-Br10 ${ }^{\text {b }}$	2.664(2)	C2-C3	1.47(5)
In3-Br11 ${ }^{\text {b }}$	2.647(2)	C3-C4	1.46(5)
In3-Br9	2.685(2)	C5-C6	1.37(4)
In1-Br1	2.472(3)	C6-C7	1.48(5)
In1-Br4	2.481(3)	C7-C8	1.47(4)
In $1-\mathrm{Br} 3$	2.474(4)	C9-C10	1.49(6)
In 1-Br2	2.505(3)	C10-C11	1.50(6)
N1-C1	1.43(5)	C11-C12	1.48(5)
N1-C4	1.42(5)	Br9-In3-Br11	179.10(7)
N2-C5	1.45 (4)	Br9-In3-Br9 ${ }^{\text {b }}$	90.18(7)
N2-C8	1.41(3)	Br9-In3-Br10	89.65(7)
N3-C9	1.43(4)	Br9B-In3-Br11	88.99(6)
N3-C12	1.45(4)	Br10B-In3-Br11	91.11(7)
Br5-In2-Br6a	81.2(3)	Br11-In3-Br11 ${ }^{\text {b }}$	91.85(8)
Br5-In2-Br7a	81.2(3)	Br9B-In3-Br10 ${ }^{\text {b }}$	89.65(7)
Br5-In2-Br8a	74.2(3)	Br9B-In3-Br11 ${ }^{\text {b }}$	179.10(7)
Br6-In2-Br7	112.4(4)	Br10B-In3-Br11 ${ }^{\text {b }}$	90.66(7)
Br6-In2-Br8	119.6(4)	Br9-In3-Br11 ${ }^{\text {b }}$	88.99(6)
Br5A-In2-Br6	81.2(3)	Br10-In3-Br11	90.66(7)
Br6-In2-Br6 ${ }^{\text {a }}$	121.9(4)	Br9B-In3-Br10	88.56(7)
Br6-In2-Br7 ${ }^{\text {a }}$	20.1(3)	Br10-In3-Br10 ${ }^{\text {b }}$	177.46(9)
Br6-In2-Br8 ${ }^{\text {a }}$	116.4(4)	Br10-In3-Br11 ${ }^{\text {b }}$	91.11(7)
$\mathrm{Br} 7-\mathrm{In} 2-\mathrm{Br} 8$	116.9(4)	Br9-In3-Br10 ${ }^{\text {b }}$	88.56(7)
Br5A-In2-Br7	81.2(3)	Br3-In1-Br4	108.25(12)
Br6A-In2-Br7	20.1(4)	Br1-In1-Br2	109.79(12)
$\mathrm{Br} 7-\mathrm{In} 2-\mathrm{Br} 7^{\text {a }}$	109.8(4)	$\mathrm{Br} 1-\mathrm{In} 1-\mathrm{Br} 3$	108.65(13)
$\mathrm{Br} 7-\mathrm{In} 2-\mathrm{Br} 8^{\text {a }}$	131.1(4)	Br1-In1-Br4	114.13(11)
Br5A-In2-Br8	74.2(3)	$\mathrm{Br} 2-\mathrm{In} 1-\mathrm{Br} 3$	107.39(13)

Br6A-In2-Br8	116.4(4)	Br2-In1-Br4	108.42(11)
Br7A-In2-Br8	131.1(4)	C1-N1-C4	98(3)
Br8-In2-Br8 ${ }^{\text {a }}$	30.2(3)	C5-N2-C8	110.4(19)
150K			
In4-Br17	2.666(4)	Br14-In4-Br18	82.76(12)
In4-Br18	2.686(4)	Br15-In4-Br16	90.69(14)
In4-Br13	2.608(4)	Br14-In4-Br17	100.41(13)
In4-Br14	2.711(4)	Br1-In1-Br2	99.71(18)
In4-Br15	2.634(4)	Br1-In1-Br3	110.82(17)
In4-Br16	2.762(4)	Br2-In1-Br4	110.48(16)
In1-Br2	$2.476(4)$	Br3-In1-Br4	106.47(14)
In $1-\mathrm{Br} 3$	2.578(4)	Br1-In1-Br4	110.36(16)
In1-Br1	$2.435(5)$	Br2-In1-Br3	118.86(15)
In1-Br4	2.544(4)	Br5-In2-Br8	112.68(19)
In2-Br5	2.618(5)	Br5-In2-Br6	108.8(2)
In2-Br6	$2.470(5)$	Br5-In2-Br7	111.71(18)
In2-Br8	$2.412(5)$	Br7-In2-Br8	103.57(16)
In2-Br7	$2.490(5)$	Br6-In2-Br7	110.8(2)
In3-Br9	$2.430(5)$	Br6-In2-Br8	109.23(19)
In3-Br10	$2.606(5)$	Br9-In3-Br11	$112.05(16)$
In3-Br11	$2.498(4)$	N4-C16	$1.45(5)$
In3-Br12	2.463(6)	N4-C13	$1.40(7)$
N1-C1	1.38(6)	N5-C17	1.52(6)
N1-C4	1.51(8)	N5-C20	1.43 (6)
N2-C8	1.44(5)	C1-C2	1.49 (7)
N2-C5	1.44(5)	C2-C3	1.56 (8)
N3-C9	1.43(5)	C3-C4	1.55(8)
N3-C12	1.47(5)	N6-C24	1.44(6)
Br15-In4-Br17	87.88(12)	N6-C21	1.43(6)
Br15-In4-Br18	91.05(13)	C5-C6	1.40(10)
Br16-In4-Br17	84.80(13)	Br10-In3-Br12	111.47(18)
Br16-In4-Br18	92.03(13)	Br9-In3-Br12	100.27(19)
Br17-In4-Br18	176.64(15)	Br10-In3-Br11	107.91(17)
Br14-In4-Br15	89.53(13)	Br9-In3-Br10	114.50(16)
Br14-In4-Br16	174.79(14)	Br11-In3-Br12	110.55(17)
Br13-In4-Br14	92.82(12)	C1-N1-C4	113(4)
Br13-In4-Br15	177.52(15)	C5-N2-C8	111(4)
Br13-In4-Br16	86.90(13)	C9-N3-C12	116(3)
Br13-In4-Br17	92.47(12)	C13-N4-C16	111(3)
Br13-In4-Br18	88.47(12)		

Symmetry codes:
$a=1-x, y, 1 / 2-z ; b=1-x, y, 3 / 2-z$

