Supporting Information

Turn-on fluorescence in a pyridine-decorated tetraphenylethylene: the cooperative effect of coordination-driven rigidification and silver ions induced aggregation

Ning Wang,^a Junying Zhang,^aXing-Dong Xu*^a and Shengyu Feng^a

a National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China. E-mail: xuxd@sdu.edu.cn

Scheme S1. Synthetic route of ligand 1.

Fig. S1. Variation of the fluorescence intensity at 537 nm of 1 with the water fractions (f_w) from 0 to 90%.

Fig. S2. Variation of the fluorescence intensity at 520 nm of 1 in glycol/THF mixtures with glycol fractions (f_w) from 0 to 90%.

Fig. S3. Fluorescence images of 1 in glycol/THF mixtures under a UV excitation, λ_{ex} =365 nm.

Fig. S4. Emission maxima of compound 1 during the grinding and fuming. "0" represent "as prepared" and λ_{ex} =380 nm.

Fig. S5. The XRD patterns of the ground and fumed compound 1 in solid state.

Fig. S6. Photographs of filter paper coated with compound 1 under UV light by grinding and fuming by DCM. λ_{ex} =365 nm.

Fig. S7. Variation of the fluorescence intensity at 537nm of 1 in response to $AgCF_3SO_3$ from 0 to 1000 equivalents in THF solution (2.0×10⁻⁵ M).

Fig. S8 The fluorescence intensity of 1 (2.0×10^{-5} M, e_x =380 nm) with 100 equivalent AgCF₃SO₃ and 100 equivalent AgC₇H₇SO₃.

Fig. S9 a) Variation of fluorescence intensity at 537nm of 1 (2.0×10^{-5} M, e_x =380 nm) in response to AgCF₃SO₃ from 0 to 100 equivalents in THF solution; b) Variation of fluorescence intensity at 537nm of 1 with 100 equivalent AgCF₃SO₃(2.0×10^{-5} M, e_x =380 nm) in response to (C₄H₉)₄NBr from 0 to 100 equivalent in THF solution.

Fig. S10 Variation of fluorescence intensity at 537nm of 1 with 1000 equivalent AgCF₃SO₃ in THF solution $(2.0 \times 10^{-5} \text{ M})$ within 3 hours.

Fig. S11. Selected TEM images of the solution of 1 in THF $(2.0 \times 10^{-5} \text{ M})$ with the addition of 100 equivalents AgCF₃SO₃.

Fig. S12. Selected SEM images of the solution of 1 in THF $(2.0 \times 10^{-5} \text{ M})$ with the addition of 100 equivalents AgCF₃SO₃.

Fig. S13. Selected CLSM images of the solution of 1 in THF (2.0×10^{-5} M, λ_{ex} =380 nm) with the addition of 100 equivalents AgCF₃SO₃.

Fig. S14. HR-ESI-MS spectra of compound 1 · Ag₂.

Fig. S15. ¹H NMR spectra of compound 1(400 MHz, CDCl₃).

Fig. S16. ¹³C NMR spectra of compound 1(100 MHz, CDCl₃).

Fig. S17. HR-ESI-MS spectra of compound 1.