Supplementary Information

Mn₂O₃/Al₂O₃ cathode material derived from metalorganic framework with enhanced cycling performance for aqueous zinc-ion batteries

Lei Gou*, Ke-Liang Mou, Xiao-Yong Fan, Ming-Juan Zhao, Yue Wang, Dong Xue, Dong-Lin Li*

Institute of Energy Materials and Device, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China

Fig.S1 FTIR spectra of Mn-BTC, Al-Mn-BTC-a, Al-Mn-BTC-b and H₃BTC.

Fig.S2 The SEM images of Mn-BTC (a, d), Al-Mn-BTC-a (b, e), and Al-Mn-BTC-b (c, f), and the corresponding EDS mapping images of a single Al-Mn-BTC-a nanorod (g).

Fig.S3 Electrochemical performance of the Mn_2O_3 based AZIB. (a) CV at a scan rate of 0.5 mV·s⁻¹ in the potential window of 1.0–1.8 V vs. $Zn^{2+}/Zn.(b)$ Discharge–charge profile at a current density of 300 mA·g⁻¹.

Fig.S4 Electrochemical performance of the Mn_2O_3/Al_2O_3 -b based AZIB. (a) CV at a scan rate of 0.5 mV·s⁻¹ in the potential window of 1.0–1.8 V vs. $Zn^{2+}/Zn.(b)$ Discharge–charge profile at a current density of 300 mA g⁻¹.

Fig.S5 Long-term cycling performance of different Al:Mn molar ratio Mn_2O_3/Al_2O_3 electrodes at a high current density of 1500 mA g⁻¹.

Fig.S6 (a) CV curves of Mn₂O₃/Al₂O₃-b electrode at different scan rate.

For the Mn_2O_3 and Mn_2O_3/Al_2O_3 -a electrode, the peak current Ip and of the scan rate $v^{1/2}$ show the good line relationship, revealing diffusion-controlled kinetics. Then, the D_{Zn} can be estimated based on Eq S1

$$I_p = 2.695 \times 10^5 ACD^{1/2} n^{2/3} v^{1/2}$$
 Eq S1

where I_p is the peak current, A is electronchemcial active area, C is the Zn^{2+} concentration, D is the Zn^{2+} diffusion coefficient, n is the number of electrons per reaction species, and v is the scan rate. Based on equation S1, the ion diffusion coefficient is proportional to the slope of I_p vs. $v^{1/2}$, which can compare the diffusion kinetics between Mn_2O_3 and Mn_2O_3/Al_2O_3 -a electrode.

Table S1 Elemental composition of Al and Mn elements in the Mn_2O_3 , Mn_2O_3/Al_2O_3 -a and Mn_2O_3/Al_2O_3 -b sample by ICP.

element	Mn ₂ O ₃	Mn ₂ O ₃ /Al ₂ O ₃ -a	Mn ₂ O ₃ /Al ₂ O ₃ -b
Mn	80.80%	70.03%	67.18%
Al	-	1.23%	3.72%

Table	S2	Collected	ICP	data	of	cycled	electrodes	first	time	and	stopped	at	fully
charge	d sta	ate in elect	rolyte	es fre	e of	f Mn ²⁺ .							

electrolyte	Mn_2O_3	Mn_2O_3/Al_2O_3 -a
Zn(ppm)	907.6	1034.0
Mn(ppm)	1.66	1.41