Electronic Supporting Information

Isolation of the novel example of a monomeric organotellurinic acid

Rajesh Deka,^{abc} Arup Sarkar,^a Ray J. Butcher,^d Peter C. Junk,^{be} David R. Turner,^{bc} Glen B. Deacon,^{*bc} and Harkesh B. Singh,^{*ab}

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India

^bIITB-Monash Research Academy, Powai, Mumbai 400076, India

^cSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia

^dDepartment of Chemistry, Howard University, Washington, D. C. 20059, USA

^eCollege of Science & Engineering, James Cook University, Townsville 4811, QLD, Australia

Contents	Page No.
Spectral data for 5, 6 and 8	S2-S16
Refinement details for the X-ray structures of 4-6, 8	S17-S18
Molecular structure of 4b	S19
The packing diagrams of 4-6 , 8	S20-S22
AIM analysis of 6	S23
NBO Plots for 8	S24
Cartesian Coordinates for 6 and 8	S25-S29

Fig S1. ¹H NMR Spectrum of 5. Inset showing expanded aromatic region.

Fig S2. ¹³C NMR Spectrum of 5.

Fig. S3 ¹²⁵Te NMR spectrum of 5.

Fig S4. ESI-mass spectrum (positive mode) of 5.

Fig S5. FT-IR spectrum (KBr pellet) of 5.

Fig S6. ¹H NMR Spectrum of 6. Inset showing expanded aromatic region.

HB5-Raj-66-1-13C1.fid HB5-Raj-66-1-13C	14.45 13.131.85 132.64 132.64 132.65 133.85 133.85 133.85 133.85 133.85 133.51
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4444 8444 8444 8444 8444 8444 8444 844

Fig S7. ¹³C NMR Spectrum of **6**.

Fig S8. ¹²⁵Te NMR Spectrum of 6.

Fig S9. High Resolution ESI-mass spectra (positive mode) of **6**. (experimental spectra is depicted in black, simulated pattern is depicted in blue)

Fig S10. FT-IR spectrum (KBr pellet) of 6.

Fig S11. ¹H NMR Spectrum of 8. Inset showing expanded aromatic region.

Fig S12. ¹³C NMR Spectrum of 8.

Fig S13. ¹²⁵Te NMR Spectrum of 8.

Fig S14. High Resolution ESI-mass spectra (positive mode) of 8.

Fig S15. FT-IR spectrum (KBr pellet) of 8.

Compound	4a	4b	5	6	8
Formula	C ₁₁ H ₈ Cl ₃ NTe	C ₁₁ H ₈ Cl ₃ NTe	C ₂₃ H ₂₀ Cl ₄ N ₂ O ₂ Te ₂	C ₁₁ H ₁₃ NO ₄ Te	$C_{24}H_{24}N_2O_7Te_2$
Crystal System	Monoclinic	Orthorhombic	Monoclinic	Triclinic	Monoclinic
Space group	P21/n	P212121	I2/a	P-1	P2/c
T/K	100(2)	100(2)	100(2)	100(2)	100(2)
a [Å]	6.8410(3)	6.8250(2)	17.756(4)	7.4274(5)	11.5515(4)
b [Å]	12.7707(6)	8.4104(3)	8.602(3)	8.7073(4)	10.5679(3)
c [Å]	14.5049(7)	22.4903(8)	35.078(5)	9.5745(6)	21.3676(6)
α [°]	90	90	90	89.309(4)	90
β [°]	97.292(4)	90	99.697(19)	74.711(5)	104.168(3)
γ [°]	90	90	90	83.026(4)	90
V [A ³]	1256.98(10)	1290.98(9)	5281(2)	592.74(6)	2529.11(14)
Z	4	4	8	2	4
$\rho_{cal}g/cm^3$	2.051	1.997	1.895	1.966	1.858
μ/mm ⁻¹	2.974	2.896	2.638	2.512	2.353
GOF	1.063	1.027	1.168	1.060	1.023
2θ range (deg)	5.662- 49.996	5.172-49.988	4.712- 49.998	4.412-62.238	3.932-62.15
Refs collected	11664	8593	56157	3377	20319
Unique/observed	2200	2259	4644	3377	7298
Parameters	145	145	311	189	318

Table S1. Refinement details for the X-ra	ay structures of 4-6 , 8
---	--

R _{int}	0.0535	0.0645	0.0608	0.0510	0.0600
$R_{I,} wR2[I > 2\sigma(I)]$	0.0329, 0.0592	0.0354, 0.0653	0.0345, 0.0712	0.0311, 0.0707	0.0490, 0.1139
$R_{I,} wR2[I > 2\sigma(I)]$	0.0438, 0.0652	0.0403, 0.0683	0.0362, 0.0723	0.0380, 0.0732	0.0699, 0.1265

Fig. S16. Molecular structures of (a) **4b**, thermal ellipsoids are set at the 50% probability level. Selected bond distances and bond angles [Å, °]: C1-Te 2.105 (7), N1-Te 2.286 (6), C11-Te 2.455 (2), Cl2-Te 2.504 (2), Cl3-Te 2.515 (2), N1-Te-C1 76.0 (3), N1-Te-Cl1 169.1 (2), N1-Te-Cl2 89.1 (2), N1-Te-Cl3 85.7 (2); (b) Superimposition of the crystallization arrangement of **4a** and **4b**.

Fig S17. Packing diagrams of 4a (left) and 4b (right).

Fig S18. Packing diagram of 5.

Fig S20. Packing diagram of 8.

Fig S21. Atoms in molecule (AIM) bond topology of 6.

 Table S2. Topological parameters for N-Te bcp of compound 6.

ρ(r)	$\nabla^2 \rho(\mathbf{r})$	V(r)	G(r)	H(r)	$H/\rho(r)$	V(r)/G(r)
0.0460	0.0897	-0.0302	0.0227	-0.0075	-0.1630	1.3303

Fig S22. Natural bond orbital (NBO) plot showing (a) $lp(N) \rightarrow \sigma^*$ (Te-C), stabilization energy, $\Delta E = 21.59$ kcal/mol; (b) $lp(N) \rightarrow \sigma^*$ (Te=O), stabilization energy, $\Delta E = 20.39$ kcal/mol.

Cartesian Coordinates for 6

C₁₁NH₉TeO₂

Electronic energy: -637.655864671 Eh

Sum of electronic and zero-point Energies = -637.478819 hartree Sum of electronic and thermal Energies = -637.465568 hartree

Sum of electronic and thermal Enthalpies = -637.464624 hartree

Te	-1.089460000	-1.140076000	-0.202511000
0	-0.811993000	-1.781458000	1.457220000
0	-3.041602000	-0.869461000	-0.027357000
Н	-3.209147000	-0.981721000	0.921108000
Ν	1.400905000	-0.719805000	-0.254398000
С	-0.734399000	0.981756000	-0.062828000
С	-1.827265000	1.845891000	-0.036355000
Н	-2.828731000	1.425888000	-0.068992000
С	-1.635249000	3.225913000	0.033393000
Н	-2.493033000	3.892395000	0.059030000
С	-0.342935000	3.746022000	0.064084000
Н	-0.185670000	4.819887000	0.108580000
С	0.753451000	2.890193000	0.032763000

Η	1.751704000	3.317019000	0.044847000
С	0.575441000	1.501190000	-0.026164000
С	1.720407000	0.568174000	-0.045165000
С	3.057143000	0.937749000	0.157398000
Н	3.323336000	1.971815000	0.341769000
С	4.042212000	-0.041620000	0.141554000
Н	5.081235000	0.231564000	0.301597000
С	3.686342000	-1.373938000	-0.065267000
Н	4.426536000	-2.166533000	-0.071002000
С	2.340734000	-1.664159000	-0.253942000
Н	1.992830000	-2.683399000	-0.401313000

Cartesian Coordinates for Model Compound of 6

 $C_{11}NH_9TeO_2$

Electronic energy: -637.615053836 hartree Sum of electronic and zero-point Energies = -637.438576 hartree Sum of electronic and thermal Energies = -637.425085 hartree Sum of electronic and thermal Enthalpies = -637.424140 hartree Sum of electronic and thermal Free Energies = -637.480446 hartree

Te	-1.253676000	-1.050298000	-0.291581000
0	-1.297940000	-1.818818000	1.337282000
0	-3.145602000	-0.603257000	-0.483337000
Η	-3.529344000	-0.814085000	0.383508000
N	2.868829000	0.714232000	-0.675628000
С	-0.663798000	0.979007000	0.077948000
С	-1.668180000	1.948002000	0.129668000

Η	-2.707666000	1.641495000	0.058075000
С	-1.336809000	3.297235000	0.234525000
Н	-2.123450000	4.045111000	0.283232000
С	0.003256000	3.681673000	0.253101000
Н	0.268173000	4.733367000	0.317671000
С	1.006064000	2.720782000	0.184132000
Н	2.052877000	3.007978000	0.184663000
С	0.692269000	1.356320000	0.116180000
С	1.807356000	0.374738000	0.076919000
С	1.763588000	-0.818253000	0.816376000
Н	0.929300000	-1.036905000	1.478286000
С	2.833606000	-1.707178000	0.716359000
Н	2.820159000	-2.637677000	1.276889000
С	3.916840000	-1.372019000	-0.087265000
Н	4.772314000	-2.031862000	-0.192629000
С	3.886970000	-0.141315000	-0.745705000
Н	4.728357000	0.171118000	-1.363079000

Cartesian Coordinates for 8

 $C_{24}N_2H_{24}Te_2O_7$

Electronic energy: -1580.68291448 hartree

Sum of electronic and zero-point Energies= -1580.236333 hartree

Sum of electronic and thermal Energies = -1580.202557 hartree

Sum of electronic and thermal Enthalpies = -1580.201612 hartree

Sum of electronic and thermal Free Energies = -1580.303713 hartree

Те 1.692352000 -1.077162000 -0.311234000

Te	-1.692315000	-1.077008000	0.311752000
0	0.000020000	-0.133517000	0.000048000
0	1.443734000	-2.243271000	1.066121000
0	1.052871000	-2.018150000	-1.832565000
Η	0.079076000	-2.197978000	-1.625477000
0	-1.443680000	-2.243774000	-1.065045000
0	-1.052837000	-2.017245000	1.833566000
Н	-0.079053000	-2.197196000	1.626581000
0	3.547852000	-1.558434000	-0.638219000
0	-3.547795000	-1.558157000	0.638995000
Ν	2.439842000	0.404413000	1.298287000
Ν	-2.439917000	0.403695000	-1.298475000
С	3.988872000	-2.865848000	-0.299135000
Н	5.057831000	-2.908543000	-0.536832000
Н	3.465297000	-3.632810000	-0.883434000
Н	3.840678000	-3.085070000	0.763687000
С	-3.988760000	-2.865796000	0.300671000
Н	-5.057800000	-2.908290000	0.538034000
Н	-3.465397000	-3.632344000	0.885698000
Н	-3.840206000	-3.085751000	-0.761943000
С	2.211082000	0.687483000	-1.362040000
С	2.051565000	0.761191000	-2.738507000
Н	1.680332000	-0.105303000	-3.276628000
С	2.369800000	1.950337000	-3.395909000
Н	2.253750000	2.020082000	-4.474007000
С	2.838930000	3.047565000	-2.672287000
Η	3.088621000	3.971552000	-3.185752000
С	2.990002000	2.966149000	-1.291320000

Η	3.355061000	3.830651000	-0.744956000
С	2.673841000	1.778304000	-0.620251000
С	2.783613000	1.618015000	0.842611000
С	3.184765000	2.603980000	1.748915000
Η	3.466386000	3.590816000	1.401103000
С	3.210943000	2.302397000	3.106157000
Η	3.519303000	3.059979000	3.820948000
С	2.836560000	1.032456000	3.545347000
Η	2.841977000	0.771390000	4.597686000
С	2.449120000	0.096883000	2.594811000
Η	2.129084000	-0.917328000	2.817643000
С	-2.211015000	0.688168000	1.361695000
С	-2.051388000	0.762613000	2.738110000
Η	-1.680092000	-0.103586000	3.276659000
С	-2.369595000	1.952102000	3.394903000
Η	-2.253454000	2.022426000	4.472953000
С	-2.838811000	3.048934000	2.670736000
Η	-3.088477000	3.973188000	3.183733000
С	-2.989995000	2.966782000	1.289825000
Η	-3.355118000	3.830988000	0.743037000
С	-2.673858000	1.778586000	0.619364000
С	-2.783725000	1.617520000	-0.843403000
С	-3.184999000	2.602990000	-1.750189000
Η	-3.466658000	3.589982000	-1.402855000
С	-3.211258000	2.300714000	-3.107274000
Η	-3.519710000	3.057912000	-3.822432000
С	-2.836841000	1.030566000	-3.545833000
Н	-2.842313000	0.768942000	-4.598033000

- C -2.449284000 0.095505000 -2.594844000
- Н -2.129230000 -0.918804000 -2.817185000