Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Half-Sandwich Rare-Earth Metal Complexes Bearing a C₅Me₄-C₆H₄-o-

CH₂NMe₂ Ligand: Synthesis, Characterization and Catalytic Properties for

Isoprene, 1-Hexene and MMA Polymerization

Tingting Song, Ning Liu, Xiaobo Tong, Feng Li, Xiaoyue Mu* and Ying Mu*

* The State Key Laboratory for Supramolecular Structure and Materials, School of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China

Table of Contents

1. ¹ H and ¹³ C NMR spectra for ligand and metal complexes	S2
2. ¹ H and ¹³ C NMR spectra of PIP samples	S7
3. ¹ H and ¹³ C NMR spectra of poly(1-hexene) sample	S9
4. Crystal Data and Structure Refinements	S10
5. ¹ H NMR spectra of a) Complex 1a , b) Complex 1a /Ph ₃ CB(C ₆ F ₅) ₄ , c) Complex 1a /Al ⁱ Bu ₃ ,	/Ph ₃ CB(C ₆ F ₅) ₄
	S11
6. ¹¹ B NMR spectra of complex 1a /Al ⁱ Bu ₃ /Ph ₃ CB(C ₆ F ₅) ₄	S11
7. ¹⁹ F NMR spectra of complex $1a/Al^iBu_3/Ph_3CB(C_6F_5)_4$	S11

Figure S2¹³C NMR spectrum of ligand HL (100 MHz, CDCl₃, 25 °C).

Figure S3 ¹H NMR spectrum of complex **1a** (400 MHz, C₆D₆, 25 °C). * stands for residual signals of hexane.

Figure S4 ¹³C NMR spectrum of complex **1a** (100 MHz, C₆D₆, 25 °C). * stands for residual signals of hexane.

Figure S5 ¹H NMR spectrum of complex **1b** (400 MHz, C₆D₆, 25 °C). * stands for residual signals of hexane.

Figure S6 ¹³C NMR spectrum of complex **1b** (100 MHz, C₆D₆,, 25 °C). * stands for residual signals of hexane.

Figure S7 ¹H NMR spectrum of complex **2a** (400 MHz, CDCl₃, 25 °C). * stands for residual signals of hexane.

Figure S8 ¹³C NMR spectrum of complex **2a** (100 MHz, CDCl₃, 25 °C). * stands for residual signals of hexane.

Figure S9 ¹H NMR spectrum of complex **2b** (400 MHz, CDCl₃, 25 °C). # stands for residual signals of CH₂Cl₂.

Figure S10¹³C NMR spectrum of complex 2b (100 MHz, CDCl₃, 25 °C).

Figure S11 ¹H NMR spectrum of polyisoprene sample (Table 2, entry 8).

Figure S13 ¹H NMR spectrum of polyisoprene sample (Table 2, entry 11). & stands for residual signals of H₂O.

	1a	1b	2a	2b	3a	3b
Formula	$C_{44}H_{68}N_2Si_2Sc_2$	$C_{44}H_{68}N_2Si_2Y_2$	$C_{44}H_{64}LiN_2O_2Cl_5Y_2$	$C_{36}H_{48}N_2Cl_4Lu_2$	$C_{36}H_{64}B_4N_2Sm_2$	$C_{36}H_{64}B_4N_2Nd_2$
Mol wt	771.10	859.00	1014.98	1000.50	868.83	856.61
Cryst	monoclinic	triclinic	monoclinic	orthorhombic	triclinic	monoclinic
system						
Space	P2 ₁ /c	р1	P2 ₁ /c	Pccn	p1	P21/c
group						
a/ Å	9.8597(8)	9.2689(6)	20.3069(12)	12.5958(8)	8.6992(5)	8.732(6)
<i>b/</i> Å	15.9005(13)	11.0330(8)	10.5790(6)	24.8514(15)	12.4170(7)	22.278(14)
<i>c/</i> Å	14.3669(12)	11.9125(8)	24.3769(15)	12.0503(7)	21.8057(12)	24.533(16)
α /deg	90.00	77.1150(10)	90.00	90.00	92.1500(10)	90.00
β/deg	106.9240(10)	75.8990(10)	111.2640(10)	90.00	94.7390(10)	99.094(11)
γ/deg	90.00	72.1310(10)	90.00	90.00	96.5830(10)	90.00
<i>V</i> / Å ³	2154.8(3)	1109.92(13)	4880.3(5)	3772.0(4)	2329.3(2)	4712(5)
Ζ	2	1	4	4	2	4
D _c /g cm ⁻³	1.188	1.285	1.381	1.762	1.239	1.207
F(000)	832.0	452.0	2096.0	1952.0	876.0	1736.0
abs	0.402	2.686	2.675	5.514	2.518	2.200
coeff/mm⁻						
1						
No. of obsd	4398	4409	9957	3863	9200	9621
reflns						
No. of						
params	238	238	517	205	449	473
refnd						
GOF	1.037	1.206	1.052	1.043	1.102	1.027
$R_1(I>2\delta)$	0.0507	0.0329	0.0426	0.0214	0.0360	0.0292
wR ₂ (I > 2δ)	0.1268	0.0915	0.1144	0.0514	0.0989	0.0710

Table S1. Crystal Data and Structure Refinements for Complexes 1a, 1b, 2a, 2b, 3a and 3b.

S11