Supporting Information

Slow Magnetic Relaxation in Co^{II}–Ln^{III} Heterodinuclear Complexes Achieved through Functionalized Nitronyl Nitroxide Biradical

Lu Xi, Juan Sun, Kang Wang, Jiao Lu, Pei Jing, and Licun Li*

Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry,

College of Chemistry, Nankai University, Tianjin 300071, China

*E-mail: llicun@nankai.edu.cn.

Complex	1 YCo	2 GdCo	3 TbCo	4 DyCo	5 HoCo		
Formula	$C_{54}H_{40}Cl_2CoF_{30}LnN_7O_{14}$						
$M(g \cdot mol^{-1})$	1799.67	1868.01	1869.68	1873.26	1875.69		
<i>T</i> (K)	113(2)	150(2)	113(2)	113(2)	150(2)		
Crystal system	triclinic	triclinic	Triclinic	triclinic	triclinic		
Space group	Pī	Pī	Pī	Pī	$P\overline{1}$		
a(Å)	12.187(2)	12.2121(5)	12.211(2)	12.180(2)	12.1364(3)		
b(Å)	13.349(3)	13.2856(6)	13.355(3)	13.325(3)	13.2997(3)		
c(Å)	23.253(5)	23.3097(12)	23.318(5)	23.270(5)	23.2102(6)		
$\alpha(\text{deg})$	91.97(3)	92.167(4)	92.09(3)	92.00(3)	91.971(2)		
$\beta(\text{deg})$	103.85(3)	103.998(4)	104.23(3)	104.14(3)	104.109(2)		
$\gamma(\text{deg})$	105.47(3)	105.463(4)	105.23(3)	105.32(3)	105.537(2)		
$V(Å^{3})$	3520.3(14)	3515.5(3)	3535.7(14)	3512.1(14)	3480.60(15)		
Z	2	2	2	2	2		
$D_{\text{calcd}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	1.698	1.765	1.756	1.771	1.790		
$M(\text{mm}^{-1})$	1.275	1.391	1.445	1.512	1.589		
$\theta(\text{deg})$	1.592-25.010	3.000-25.010	1.590-25.010	1.594-25.008	2.931-25.010		
F(000)	1790	1840	1842	1844	1846		
Reflns	34207	28714	31063	33402	28291		
Unique	12403/0.0624	12385/0.0360	12419/0.0559	12378/0.0959	12266/0.0468		
$GOF(F^2)$	1.001	1.004	1.010	1.007	1.010		
$R_1/wR_2(I>2\sigma(I))$	0.0685/0.170	0.0528/0.151	0.0752/0.181	0.0614/0.170	0.0406/0.091		
R_1/wR_2 (alldata)	0.0961/0.192	0.0651/0.161	0.0881/0.203	0.0776/0.195	0.0589/0.100		

 Table S1. Crystallographic data for 1–5.

	1 YCo		2 GdCo
Y(1)-O(2)	2.389(4)	Gd(1)-O(2)	2.426(4)
Y(1)-O(3)	2.285(4)	Gd(1)-O(3)	2.326(4)
Y(1)-O(4)	2.381(4)	Gd(1)-O(4)	2.424(4)
Y(1)-O(5)	2.362(4)	Gd(1)-O(5)	2.398(4)
Y(1)-O(6)	2.293(4)	Gd(1)-O(6)	2.332(4)
Y(1)-O(7)	2.325(4)	Gd(1)-O(7)	2.362(4)
Y(1)-O(8)	2.351(4)	Gd(1)-O(8)	2.395(4)
Y(1)-O(9)	2.327(3)	Gd(1)-O(9)	2.366(4)
Co(1)-O(11)	2.050(4)	Co(1)-O(11)	2.054(4)
Co(1)-O(12)	2.063(4)	Co(1)-O(12)	2.062(4)
Co(1)-O(13)	2.070(4)	Co(1)-O(13)	2.074(4)
Co(1)-O(14)	2.065(4)	Co(1)-O(14)	2.067(4)
Co(1)–N(6)	2.133(4)	Co(1)–N(6)	2.144(4)
Co(1)–N(7)	2.134(4)	Co(1)-N(7)	2.128(5)
N(6)–N(5)	1.354(5)	N(6)–N(5)	1.350(6)
O(1)–N(1)	1.274(5)	O(1)-N(1)	1.270(6)
O(2)–N(2)	1.309(5)	O(2)–N(2)	1.296(6)
O(9)–N(3)	1.304(5)	O(9)–N(3)	1.301(6)
O(10)–N(4)	1.263(5)	O(10)–N(4)	1.248(7)
O(9)-Y(1)-O(2)	83.73(13)	O(9)-Gd(1)-O(2)	83.92(13)
O(3)-Y(1)-O(4)	72.33(13)	O(3)-Gd(1)-O(4)	71.47(15)
O(6)-Y(1)-O(5)	71.47(13)	O(6)-Gd(1)-O(5)	70.61(15)
O(7)-Y(1)-O(8)	73.01(13)	O(7)-Gd(1)-O(8)	72.01(14)
N(6)-Co(1)-N(7)	76.87(16)	N(6)-Co(1)-N(7)	76.61(17)
O(11)-Co(1)-O(12)	88.10(15)	O(11)-Co(1)-O(12)	88.02(16)
O(14)-Co(1)-O(13)	85.90(15)	O(14)-Co(1)-O(13)	85.60(18)

Table S2. Selected bond lengths [Å] and bond angles $[\circ]$ for 1–2.

3 TbCo		4 DyCo		5 HoCo	
Tb(1)–O(2)	2.429(6)	Dy(1)-O(2)	2.416(5)	Ho(1)-O(2)	2.387(3)
Tb(1)–O(3)	2.328(7)	Dy(1)-O(3)	2.306(5)	Ho(1)–O(3)	2.295(3)
Tb(1)–O(4)	2.408(7)	Dy(1)-O(4)	2.402(5)	Ho(1)–O(4)	2.385(3)
Tb(1)–O(5)	2.393(7)	Dy(1)-O(5)	2.379(5)	Ho(1)-O(5)	2.359(3)
Tb(1)–O(6)	2.334(7)	Dy(1)–O(6)	2.318(5)	Ho(1)-O(6)	2.297(3)
Tb(1)–O(7)	2.357(6)	Dy(1)-O(7)	2.337(5)	Ho(1)-O(7)	2.323(3)
Tb(1)–O(8)	2.385(7)	Dy(1)–O(8)	2.364(6)	Ho(1)-O(8)	2.348(3)
Tb(1)–O(9)	2.365(6)	Dy(1)-O(9)	2.344(5)	Ho(1)-O(9)	2.327(3)
Co(1)-O(11)	2.061(6)	Co(1)-O(11)	2.050(5)	Co(1)-O(11)	2.059(3)
Co(1)-O(12)	2.068(7)	Co(1)-O(12)	2.070(5)	Co(1)-O(12)	2.064(3)
Co(1)-O(13)	2.077(7)	Co(1)–O(13)	2.072(5)	Co(1)-O(13)	2.074(3)
Co(1)-O(14)	2.073(7)	Co(1)-O(14)	2.078(5)	Co(1)-O(14)	2.064(3)
Co(1)–N(6)	2.150(7)	Co(1)–N(6)	2.147(6)	Co(1)–N(6)	2.139(3)
Co(1)–N(7)	2.134(8)	Co(1)–N(7)	2.125(6)	Co(1)–N(7)	2.123(4)
N(6)–N(5)	1.355(10)	N(6)–N(5)	1.345(8)	N(6)–N(5)	1.352(4)
O(1)–N(1)	1.277(10)	O(1)–N(1)	1.270(8)	O(1)–N(1)	1.273(5)
O(2)–N(2)	1.299(9)	O(2)–N(2)	1.290(7)	O(2)–N(2)	1.295(4)
O(9)–N(3)	1.319(10)	O(9)–N(3)	1.319(8)	O(9)–N(3)	1.304(4)
O(10)–N(4)	1.262(11)	O(10)–N(4)	1.266(8)	O(10)–N(4)	1.261(5)
O(9)–Tb(1)–O(2)	83.5(2)	O(9)–Dy(1)–O(2)	83.47(17)	O(9)-Ho(1)-O(2)	83.82(9)
O(3)–Tb(1)–O(4)	71.6(2)	O(3)–Dy(1)–O(4)	71.75(19)	O(3)-Ho(1)-O(4)	72.33(10)
O(6)–Tb(1)–O(5)	71.3(2)	O(6)–Dy(1)–O(5)	71.22(17)	O(6)-Ho(1)-O(5)	71.73(11)
O(7)–Tb(1)–O(8)	72.4(2)	O(7)–Dy(1)–O(8)	72.76(18)	O(7)-Ho(1)-O(8)	73.15(10)
N(6)-Co(1)-N(7)	76.8(3)	N(6)-Co(1)-N(7)	76.6(2)	N(6)-Co(1)-N(7)	76.77(13)
O(11)-Co(1)-O(12)	87.9(3)	O(11)-Co(1)-O(12)	88.19(19)	O(11)-Co(1)-O(12)	88.11(11)
O(14)-Co(1)-O(13)	85.9(3)	O(14)-Co(1)-O(13)	85.9(2)	O(14)-Co(1)-O(13)	85.73(12)

Table S3. Selected bond lengths [Å] and bond angles $[\circ]$ for 3–5.

Scheme S1. The synthesis of NITPh-PyPzbis biradical ligand (EG: ethylene glycol, PyPz: 2-(1H-pyrazol-3-yl)pyridine).

Figure S1. The IR spectra for compounds 1–5.

Figure S2. (a) The dinuclear structure of **1** (H, F, and CH₂Cl₂ are omitted). Color code: light blue-Y, pink-Co, gray-C, red-O, blue-N. (b) Coordination polyhedron of lanthanide Y in **1**.

Figure S3. (a) The dinuclear structure of **3** (H, F, and CH₂Cl₂ are omitted). Color code: green-Tb, pink-Co, gray-C, red-O, blue-N. (b) Coordination polyhedron of lanthanide Tb in **3**.

Figure S4. (a) The dinuclear structure of **4** (H, F, and CH₂Cl₂ are omitted). Color code: teal-Dy, pink-Co, gray-C, red-O, blue-N. (b) Coordination polyhedron of lanthanide Dy in **4**.

Figure S5. (a) The dinuclear structure of **5** (H, F, and CH₂Cl₂ are omitted). Color code: aqua-Ho, pink-Co, gray-C, red-O, blue-N. (b) Coordination polyhedron of lanthanide Ho in **5**.

Figure S6. Packing diagram of 1 (H, F, and CH_2Cl_2 are omitted).

Figure S7. Packing diagram of 2 (H, F, and CH₂Cl₂ are omitted).

Figure S8. Packing diagram of 3 (H, F, and CH₂Cl₂ are omitted).

Figure S9. Packing diagram of 4 (H, F, and CH₂Cl₂ are omitted).

Figure S10. Packing diagram of 5 (H, F, and CH₂Cl₂ are omitted).

Figure S11. The Powder X-ray diffraction (PXRD) patterns for complexes 1–5 at room temperature.

Figure S14. *M* vs *H* plot for **5** at 2 K.

Figure S15. Temperature dependence of χ' for **4** in zero dc field.

Figure S16. Temperature dependence of χ'' for **4** in zero dc field.

Figure S17. Frequency dependencies of $\chi'(a)$ and $\chi''(b)$ for **4** in the dc fields of 200–5000 Oe.

Figure S18. The τ vs *H* plot for **4** at 2 K under applied dc fields.

Figure S19. Temperature dependencies of χ' and χ'' for **2** in zero dc field.

Figure S20. Temperature dependencies of χ' and χ'' for **3** in zero dc field.

Figure S21. Temperature dependence of χ' for **5** in zero dc field.

Figure S22. Temperature dependence of χ'' for **5** in zero dc field.

Figure S23. Frequency dependencies of $\chi'(a)$ and $\chi''(b)$ for **5** in the dc fields of 200–5000 Oe.