Supporting Information

Cooperative Ruthenium Complex Catalyzed Multicomponent Synthesis of Pyrimidines

Milan Maji and Sabuj Kundu*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

Email: sabuj@iitk.ac.in

Table of Contents

	page
1. Optimization Details	3-4
2. General Procedure for Synthesis of pyrimidines and Determination of Yield	4
3. ¹ H-NMR and ³¹ P-NMR Spectra of Metal Complexes	5-9
4. ESI-MS spectra of complex A and B	10-11
5. X-Ray Structure Determination Data	12-17
6. Characterization Data of Products	
7. Copies of ¹ H and ¹³ C NMR Spectra of the Products	
8. References	51

1. Optimization Details

Table S1. Optimization of Reaction Conditions^a

Entry	Amidine: 1°	Base	Ru(II) cat	Solvent	Yield
-	Alc: 2° Alc	(equiv.)			(%) ^a
1	1:1.3:1.3	$KO^{t}Bu$ (0.5)	Cat. A	toluene	61
2	1:1.3:1.3	$KO^{t}Bu$ (0.5)	Cat. A	<i>tert</i> -amyl	42
				alcohol	
3	1:1.3:1.3	KO'Bu (0.5)	Cat. A	diglyme	21
4	1:1.3:1.3	$KO^{t}Bu$ (0.5)	Cat. A	dioxane	79
5	1:1.3:1.3	KO ^t Bu (0.5)	Cat. B	dioxane	31
6	1:1.3:1.3	KO'Bu (0.5)	Cat. C	dioxane	43
7	1:1.3:1.3	$KO^{t}Bu$ (0.5)	Cat. D	dioxane	51
8	1:1.3:1.3	$KO^{t}Bu$ (0.5)	Cat. E	dioxane	28
9	1:1.3:1.3	KO'Bu (0.5)	Cat. F	dioxane	37
10	1:1.3:1.3	$KO^{t}Bu$ (0.5)	RuHClCO(PPh ₃) ₃	dioxane	39
11	1:1.3:1.3	KO'Bu (0.5)	-	dioxane	<10
12	1:1.3:1.3	KOH (0.5)	Cat. A	dioxane	41
13	1:1.3:1.3	NaOH (0.5)	Cat. A	dioxane	28
14	1:1.3:1.3	$Cs_2CO_3(0.5)$	Cat. A	dioxane	<10
15	1:1.3:1.3	$K_2CO_3(0.5)$	Cat. A	dioxane	<10
16	1:1.3:1.3	KO'Bu (1.0)	Cat. A	dioxane	95
17	1:1.3:1.3	KO'Bu (1.0)	Cat. A	dioxane	61 ^{<i>b</i>}
18	1:1.3:1.3	KO ^{<i>i</i>} Bu (1.0)	Cat. A	dioxane	41 ^c
19	1:1:1	$KO^{t}Bu$ (1.0)	Cat. A	dioxane	71

^{*a*}Reaction Conditions: benzamidine (0.25 mmol), 1-phenylethanol (0.325 mmol), benzyl alcohol (0.325 mmol), cat **A** (1.0 mol%). The amount (equiv.) of KO^{*t*}Bu were given with respect to the benzamidine substrate. Yields were determined by ¹H-NMR spectroscopy using 1,3,5-trimethoxy benzene as internal standard. ^{*b*}Heated for 12 h. ^{*c*}Using 0.5 mol% cat. **A**.

2. General Procedure for Synthesis of pyrimidines and Determination of Yield

In a Schlenk tube amidine (0.5 mmol), primary alcohol (0.65 mmol), secondary alcohol (0.65 mmol), cat. A (1.0 mol%), KO^tBu (0.5 mmol) and dioxane (3.0 mL) were taken. The tube was sealed and reaction mixture was heated at 120 °C in a preheated oil bath for 24 h. Yield was determined by the analysis of the ¹H-NMR spectra of the crude reaction mixture using CDCl₃ as NMR solvent. Final products were purified by silica-gel column chromatography using hexane/ethyl acetate as eluent. (**Caution**: All the catalytic reactions were carried out inside the fume hood and after the reactions Schlenk tubes were carefully opened under proper ventilation to release the hydrogen gas produced in the reactions.)

After the reaction, it was cooled to room temperature and then 1,3,5-trimethoxy benzene (0.5 equiv. with respect to banzamidine) was added as internal standard. Then the reaction mixture was filtered through a small plug of neutral alumina and small portion was taken for determination of yield. In a typical example, as in Table S1, entry 16, the ¹H-NMR spectra of the crude reaction mixture is shown below.

Figure S1. ¹H-NMR spectra of the crude reaction mixture as in Table S1, entry 16

3. ¹H-NMR and ³¹P-NMR Spectra of Metal Complexes

Figure S2. A) ¹H-NMR Spectra of complex A. B) ³¹P-NMR Spectra of complex A.

Figure S3. A) ¹H-NMR Spectra of complex **B**. B) ³¹P-NMR Spectra of complex **B**.

Figure S4. A) ¹H-NMR Spectra of complex E. B) ³¹P-NMR Spectra of complex E.

Figure S5. A) ¹H-NMR Spectra of complex **F**. B) ³¹P-NMR Spectra of complex **F**.

Figure S6. A) ¹H-NMR Spectra of complex **A'**. B) ³¹P-NMR Spectra of complex **A'**.

4. ESI-MS Spectra of Complex A and B

Figure S7. A) ESI-MS spectra of complex A. B) Expansion of the Spectra of complex A

Figure S8. A) ESI-MS spectra of complex B. B) Expansion of the Spectra of complex B

5. X-Ray Structure Determination Data

Single-crystal X-ray data of all the complexes were collected at 100 K by using a Bruker SMART APEX II CCD diffractometer. MoK α radiation ($\lambda = 0.71073$ Å). The program SMART was used for collecting frames of data, indexing reflections, and determining lattice parameters, SAINT for integration of the intensity of reflections and scaling, SADABS for absorption correction, and SHELXTL for space group and structure determination and least-squares refinements on F².^{1, 2} The crystal structure were solved and refined by full-matrix least-squares methods against F^2 by using the program SHELXL-2014³ using Olex-2 software.⁴ All the nonhydrogen atoms were refined with anisotropic displacement parameters. Hydrogen positions were fixed at calculated positions and refined isotropically. The few lattice solvent molecules of all crystals could not be modelled satisfactorily due to the presence of severe disorder. Therefore, PLATON/SQUEEZE program has been performed to discard those disordered solvents molecules.⁵ For all other solvent molecules that are located successfully are modelled as described above. The figures have been generated using Mercury 3.7 software (30% probability thermal ellipsoids).⁶ The crystallographic information file were deposited in Cambridge Structural Database (CCDC) and the CCDC number of complex A, C, D and E are CCDC 1937945, CCDC 1954543, CCDC 1953620 and CCDC 1953618 respectively.

In a Schlenk tube amidine (0.5 mmol), primary alcohol (0.65 mmol), secondary alcohol (0.65 mmol), cat. A (1.0 mol%), KO^tBu (0.5 mmol) and dioxane (3.0 mL) were taken. The tube was sealed and reaction mixture was heated at 120 °C in a preheated oil bath for 24 h. After the reaction, it was cooled to room temperature and then 1,3,5-trimethoxy benzene was added as internal standard. Then the reaction mixture was filtered through a small plug of neutral alumina and small portion was taken for determination of yield. yield was determined by the analysis of the ¹H-NMR spectra of the crude reaction mixture using CDCl₃ as NMR solvent. Final products were purified by silica-gel column chromatography using hexane/ethyl acetate as eluent.

Figure S9. Solid state structure of complex A (30% thermal ellipsoids, Cl counter anion and solvent molecules were omitted for clarity).

Single crystals suitable for X-ray diffraction were grown in $CH_2Cl_2/diethyl$ ether by slow evaporation process at ambient temperature. One water molecule was co-crystallized during the crystallization process as solvent impurity.

Identification code	Complex A
Empirical formula	$C_{49}H_{42}ClN_3O_3P_2Ru$
Formula weight	919.31
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	12.1744(3)
b/Å	12.4671(3)
c/Å	16.7201(4)
$\alpha/^{\circ}$	70.5040(10)
β/°	73.1360(10)
$\gamma/^{\circ}$	73.7020(10)
Volume/Å ³	2241.36(10)
Z	2
$\rho_{calc}g/cm^3$	1.362
μ/mm^{-1}	0.525
F(000)	944.0
Crystal size/mm ³	$0.24 \times 0.21 \times 0.19$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	6.206 to 49.996
Index ranges	$\text{-}14 \leq h \leq 14, \text{-}14 \leq k \leq 14, \text{-}19 \leq l \leq 19$
Reflections collected	27029
Independent reflections	7848 [$R_{int} = 0.0497$, $R_{sigma} = 0.0551$]
Data/restraints/parameters	7848/166/528
Goodness-of-fit on F ²	1.029
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0386, wR_2 = 0.0847$
Final R indexes [all data]	$R_1 = 0.0509, wR_2 = 0.0903$
Largest diff. peak/hole / e Å ⁻³	1.02/-0.85

Tabla S2	Crystallographi	Data and Rafinamant	Paramatars for comp	lov A
1 abic 52.	Ci ystanogi apiny	. Data anu Kermemeni	a and the stor comp	ICA A.

Figure S10. Solid state structure of complex C (30% thermal ellipsoids, Cl counter anion and solvent molecules were omitted for clarity).

Single crystals suitable for X-ray diffraction were grown in CH_2Cl_2/n -hexane by slow evaporation process at ambient temperature. One dichloromethane molecule was co-crystallized during the crystallization process as solvent impurity.

Identification code	16sepa a
Empirical formula	$C_{51}H_{44}Cl_3N_3O_2P_2Ru$
Formula weight	1000.25
Temperature/K	273.15
Crystal system	orthorhombic
Space group	Pnma
a/Å	19.4234(8)
b/Å	14.5749(7)
c/Å	16.5414(7)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4682.8(4)
Z	4
$\rho_{calc}g/cm^3$	1.419
μ/mm^{-1}	0.618
F(000)	2048.0
Crystal size/mm ³	$0.2 \times 0.2 \times 0.2$

Table S3. Crystallographic Data and Refinement Parameters for complex C

Radiation	MoKα (λ = 0.71073)
20 range for data collection/°	5.354 to 56.608
Index ranges	$\text{-}25 \leq h \leq 25, \text{-}19 \leq k \leq 19, \text{-}22 \leq l \leq 22$
Reflections collected	68913
Independent reflections	6035 [$R_{int} = 0.0789, R_{sigma} = 0.0360$]
Data/restraints/parameters	6035/12/326
Goodness-of-fit on F ²	1.078
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0494, wR_2 = 0.0891$
Final R indexes [all data]	$R_1 = 0.0679, wR_2 = 0.0985$
Largest diff. peak/hole / e Å ⁻³	1.04/-1.24

Figure S11. Solid state structure of complex **D** (30% thermal ellipsoids, Cl counter anion and solvent molecules were omitted for clarity).

Single crystals suitable for X-ray diffraction were grown in CH_2Cl_2 /benzene by slow evaporation process at ambient temperature. One half of benzene molecule was co-crystallized during the crystallization process as solvent impurity. Half of benzene molecule was present because of mirror symmetry.

Table S4. Crystallographic Data and Refinement Parameters for complex D

Identification code	Complex_ D
Empirical formula	$C_{53}H_{45}ClN_3OP_2Ru$
Formula weight	937.37
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/n$

a/Å	9.806(5)
b/Å	22.261(5)
c/Å	19.795(5)
α/°	90.000(5)
β/°	95.099(5)
γ/°	90.000(5)
Volume/Å ³	4304(3)
Z	4
$\rho_{calc}g/cm^3$	1.447
μ/mm^{-1}	0.545
F(000)	1928.0
Crystal size/mm ³	$0.01 \times 0.01 \times 0.01$
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	4.132 to 56.744
Index ranges	$\text{-13} \le h \le 10, \text{-29} \le k \le 29, \text{-26} \le l \le 26$
Reflections collected	43395
Independent reflections	10744 [$R_{int} = 0.1038$, $R_{sigma} = 0.1174$]
Data/restraints/parameters	10744/0/555
Goodness-of-fit on F ²	1.007
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0566, wR_2 = 0.1133$
Final R indexes [all data]	$R_1 = 0.1194$, $wR_2 = 0.1334$
Largest diff. peak/hole / e Å ⁻³	1.11/-0.73

Figure S12. Solid state structure of complex E (30% thermal ellipsoids, Cl counter anion and solvent molecules were omitted for clarity).

Single crystals suitable for X-ray diffraction were grown in CH_2Cl_2 /benzene by slow evaporation process at ambient temperature. In asymmetric unit of the crystal, two half of benzene molecules were co-crystallized during the crystallization process as solvent impurity.

Identification code	Complex_E
Empirical formula	$C_{55}H_{46}ClN_3OP_2Ru$
Formula weight	963.41
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	9.693(5)
b/Å	24.331(5)
c/Å	19.244(5)
$\alpha/^{\circ}$	90.000(5)
β/°	91.923(5)
$\gamma/^{\circ}$	90.000(5)
Volume/Å ³	4536(3)
Z	4
$\rho_{calc}g/cm^3$	1.411
μ/mm^{-1}	0.519
F(000)	1984.0
Crystal size/mm ³	$0.01 \times 0.01 \times 0.01$
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	4.526 to 56.6
Index ranges	$-12 \le h \le 12, -32 \le k \le 32, -25 \le l \le 25$
Reflections collected	71173
Independent reflections	11255 [$R_{int} = 0.1061$, $R_{sigma} = 0.0735$]
Data/restraints/parameters	11255/0/572
Goodness-of-fit on F ²	1.082
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0502, wR_2 = 0.1122$
Final R indexes [all data]	$R_1 = 0.0977, wR_2 = 0.1406$
Largest diff. peak/hole / e Å ⁻³	2.41/-1.24

 Table S5. Crystallographic Data and Refinement Parameters for complex E

6. Characterization Data of Products

2,4,6-Triphenylpyrimidine (4)⁷

140 mg; 91% yield; white solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.75-8.73$ (m, 2H), 8.31-8.28 (m, 4H), 8.01 (s, 1H), 7.58-7.52 (m, 9H). ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 164.87$, 164.64, 138.30, 137.68, 130.85, 130.72, 129.10, 128.59, 127.39, 110.38. **GC-MS** (M⁺) = 308.1.

4-(4-Methoxyphenyl)-2,6-diphenylpyrimidine (5)⁷

150 mg; 89% yield; white solid; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.73-8.70$ (m, 2H), 8.29-8.26 (m, 4H), 7.94 (s, 1H), 7.56-7.52 (m, 6H), 7.08-7.04 (m, 2H), 3.89 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 164.57$, 164.44, 164.30, 162.01, 138.39, 137.80, 130.78, 130.70, 130.05, 128.97, 128.79, 128.60, 128.45, 127.43, 127.25, 114.46, 114.21, 109.54, 55.64. **GC-MS** (M⁺) = 338.1.

4-(4-Fluorophenyl)-2,6-diphenylpyrimidine (6)⁷

112 mg; 69% yield; white solid; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.72$ -8.69 (m, 2H), 8.30-8.26 (m, 4H), 7.95 (s, 1H), 7.56-7.52 (m, 6H), 7.22 (d, $J_{\rm H,H} = 8.7$ Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 165.93$, 164.94, 164.60, 163.71, 163.44, 138.11, 137.52, 130.72,130.93, 130.80, 129.43, 129.34, 129.01,128.54, 127.36, 116.13,115.91, 109.96. **GC-MS** (M⁺) = 326.1.

4-(3-Methoxyphenyl)-2,6-diphenylpyrimidine (7)

157 mg; 93% yield; white solid; ¹H NMR (500 MHz, CDCl₃): δ = 8.73-8.71 (m, 2H), 8.29-8.27 (m, 2H), 7.99 (s, 1H), 7.89 (t, *J*_{H,H} = 8.7 Hz, 1H), 7.82 (dd, *J*_{H,H} = 7.7 Hz, 0.9 Hz, 1H), 7.56-7.51 (m, 6H), 7.47 (t, *J*_{H,H} = 7.9 Hz, 1H), 7.09-7.07 (m, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 164.90, 164.67, 164.59, 160.29, 139.16, 138.23, 137.64, 129.02, 128.58, 128.54, 127.39, 119.74, 116.46, 112.93, 110.57, 55.58. HRMS (ESI): Calcd. for C₂₃H₁₉N₂O [M+H]⁺: 339.1497; found: 339.1499.

4-(Naphthalen-2-yl)-2,6-diphenylpyrimidine (8)⁸

170 mg; 95% yield; white solid; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.79-8.77$ (m, 3H), 8.39 (dd, $J_{\text{H,H}} = 8.5$ Hz, 1.6 Hz, 1H), 8.33 (dd, $J_{\text{H,H}} = 7.8$ Hz, 1.7 Hz, 2H), 8.13 (s, 1H), 8.04-8.0 (m, 2H), 7.92-7.90 (m, 1H), 7.60-7.54 (m, 8H). ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 164.84$, 164.70, 164.64, 138.29, 137.65, 134.91, 134.70, 133.39, 130.87, 130.74, 129.11, 129.0, 128.74, 128.61, 128.55, 127.87, 127.47, 127.40, 126.65, 124.32, 110.56.

GC-MS $(M^+) = 358.1$.

4-(Benzo[d][1,3]dioxol-5-yl)-2,6-diphenylpyrimidine (9)⁸

155 mg; 88% yield; light yellow solid; ¹H NMR (400 MHz, CDCl₃): δ = 8.72-8.69 (m, 2H), 8.27-8.25 (m, 2H), 7.87 (s, 1H), 7.83-7.79 (m, 2H), 7.56-7.52 (m, 6H), 6.94 (d, $J_{\text{H,H}}$ = 8.1 Hz, 1H), 6.04 (s, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 164.63, 164.39, 164.04, 150.07, 148.55, 130.65, 128.94, 128.54, 128.48, 127.33, 121.90, 109.59, 108.59, 107.57, 101.68. GC-MS (M⁺) = 352.1.

2,4-Diphenyl-6-(pyridin-3-yl)pyrimidine (10)⁷

121 mg; 78% yield; white solid; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 9.45$ (d, $J_{\text{H,H}} = 1.7$ Hz, 1H), 8.77 (dd, $J_{\text{H,H}} = 4.8$ Hz, 1.6 Hz, 1H), 8.72-8.69 (m, 2H), 8.59 (dt, $J_{\text{H,H}} = 8.0$ Hz, 2.0 Hz, 1H), 8.30-8.27 (m, 2H), 8.01 (s, 1H), 7.58-7.51 (m, 6H), 7.49 (qd, $J_{\text{H,H}} = 4.7$ Hz, 0.5 Hz, 1H). ¹³C{¹H} **NMR** (100 MHz, CDCl₃): $\delta = 165.21$, 164.84, 162.49, 151.60, 148.70, 137.81, 137.18, 134.84, 133.26, 131.16, 131.0, 129.11, 129.08, 128.61, 128.55, 127.39, 123.82, 110.32. **GC-MS** (M⁺) = 309.1.

4-Cyclopropyl-2,6-diphenylpyrimidine (11)⁹

96 mg; 71% yield; light yellow gel; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.60-8.58$ (m, 2H), 8.23-8.21 (m, 2H), 7.55-7.48 (m, 6H), 7.47 (s, 1H), 2.15-2.09 (m, 1H), 1.39-1.35 (m, 2H), 1.17-1.12 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 172.22$, 163.94, 162.87, 138.24, 137.49, 130.43, 130.32, 128.77, 128.28, 128.24, 127.15, 112.42, 17.30, 10.90. **GC-MS** (M⁺) = 272.1.

4-Isopropyl-2,6-diphenylpyrimidine (12)¹⁰

79 mg; 58% yield; yellow oil; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.64-8.61$ (m, 2H), 8.22-8.20 (m, 2H), 7.55-7.47 (m, 6H), 7.47 (s, 1H), 3.13 (sept, $J_{\text{H,H}} = 6.9$ Hz, 1H), 1.41 (d, $J_{\text{H,H}} = 6.9$ Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 176.40$, 164.13, 164.04, 138.42, 137.72, 130.62, 130.47, 128.92, 128.47, 127.30, 111.64, 36.44, 22.03. **GC-MS** (M⁺) = 274.1.

2,4-Diphenyl-6,7,8,9-tetrahydro-5H-cyclohepta[d]pyrimidine (13)

122 mg; 81% yield; colourless gel; ¹H NMR (400 MHz, CDCl₃): δ = 8.48 (dd, $J_{H,H}$ = 7.9 Hz, 2.2 Hz, 2H), 7.60-7.58 (m, 2H), 7.49-7.44 (m, 6H), 3.17-3.15 (m, 2H), 2.89-2.86 (m, 2H), 1.93 (quint, $J_{H,H}$ = 5.6 Hz, 2H), 1.82 (quint, $J_{H,H}$ = 5.0 Hz, 2H), 1.71 (quint, $J_{H,H}$ = 5.5 Hz, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 172.81, 164.43, 161.17, 139.37, 138.25, 130.48, 130.06, 129.34, 128.77, 128.42, 128.29, 128.18, 39.44, 32.34, 29.23, 27.85, 26.22. HRMS (ESI): Calcd. for C₂₁H₂₁N₂ [M+H]⁺: 301.1705; found: 301.1709.

5-Methyl-2,4,6-triphenylpyrimidine (14)¹¹

135 mg; 57% yield; white solid; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.56$ (d, $J_{H,H} = 5.2$ Hz, 2H), 7.74 (d, $J_{H,H} = 7.6$ Hz, 4H), 7.50-7.45 (m, 9H), 2.39 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 167.02$, 161.57, 139.32, 138.0, 129.45, 129.19, 128.44, 128.37, 123.25, 17.82. **GC-MS** (M⁺) = 322.1.

2,4-Diphenyl-5,6-dihydrobenzo[h]quinazoline (15)¹²

44 mg; 92% yield; white solid; ¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.67$ (d, $J_{\text{H,H}} = 7.2$ Hz, 2H), 8.63-8.61 (m, 1H), 7.75 (dd, $J_{\text{H,H}} = 8.1$ Hz, 1.8 Hz, 2H), 7.54-7.44 (m, 8H), 7.28-7.27 (m, 1H), 3.12-3.08 (m, 2H), 2.91 (t, $J_{\text{H,H}} = 7.8$ Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 164.35$, 162.21, 160.19, 139.18, 138.41, 138.29, 133.45, 130.89, 130.30, 129.31, 128.46, 128.37, 128.24, 127.81, 127.35, 126.12, 123.54, 27.90, 24.86. **GC-MS** (M⁺) = 334.1.

4-(3,4-Dimethoxyphenyl)-2,6-diphenylpyrimidine (18)

145 mg; 79% yield; yellow oil; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.70$ (d, $J_{\text{H,H}} = 6.4$ Hz, 2H), 8.28 (d, $J_{\text{H,H}} = 6.2$ Hz, 2H), 7.94 (s, 2H), 7.83 (d, $J_{\text{H,H}} = 8.4$ Hz, 1H), 7.56-7.51 (m, 6H), 7.01 (d, $J_{\text{H,H}} = 8.5$ Hz, 1H), 4.06 (s, 3H), 3.97 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 164.61$, 164.43, 164.35, 151.61, 149.46, 137.75, 130.67, 128.97, 128.52, 127.36, 120.44, 111.14, 110.22, 109.73, 56.19. **HRMS** (ESI): Calcd. for C₂₄H₂₁N₂O₂ [M+H]⁺: 369.1603; found: 369.1609.

4-(3,5-Dimethoxy-4-methylphenyl)-2,6-diphenylpyrimidine (19)

136 mg; 71% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.71-8.68$ (m, 2H), 8.29-8.27 (m, 2H), 7.92 (s, 1H), 7.57-7.52 (m, 8H), 4.02 (s, 6H), 3.94 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 164.87$, 164.54, 164.49, 153.73, 140.72, 138.14, 137.61, 133.15, 130.91, 130.79, 129.02, 128.56, 128.52, 127.39, 110.24, 61.12, 56.50. HRMS (ESI): Calcd. for C₂₅H₂₃N₂O₂ [M+H]⁺: 383.1760; found: 383.1765.

2,4-Diphenyl-6-(4-(trifluoromethyl)phenyl)pyrimidine (21)¹³

120 mg; 64% yield; white solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.72$ -8.69 (m, 2H), 8.36 (d, $J_{\text{H,H}} = 8.2$ Hz, 2H), 8.29-8.27 (m, 2H), 7.99 (s, 1H), 7.80 (d, $J_{\text{H,H}} = 8.3$ Hz, 2H), 7.57-7.53 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 165.26$, 164.79, 163.33, 140.98, 137.88, 137.25, 131.13, 130.97, 129.06, 128.60, 128.57, 127.70, 127.39, 125.93, 125.90, 110.60. GC-MS (M⁺) = 376.1.

4-(3-Chlorophenyl)-2,6-diphenylpyrimidine (22)¹⁴

89 mg; 52% yield; white solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.72-8.69$ (m, 2H), 8.29-8.26 (m, 3H), 8.15-8.12 (dt, $J_{H,H} = 6.8$ Hz, 1.5 Hz, 1H), 7.95 (s, 1H), 7.56-7.48 (m, 8H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 165.13$, 164.70, 163.39, 139.45, 137.96, 137.34, 135.18, 131.04, 130.89, 130.78, 129.03, 128.58, 127.50, 127.38, 125.42, 110.33. GC-MS (M⁺) = 342.1.

4-(2-Methoxyphenyl)-2,6-diphenylpyrimidine (23)¹⁵

103 mg; 61% yield; white solid; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.72-8.70$ (m, 2H), 8.30 (s, 1H), 8.29-8.24 (m, 3H), 7.57-7.46 (m, 7H), 7.17 (t, $J_{\rm H,H} = 7.9$ Hz, 1H), 7.06 (d, $J_{\rm H,H} = 7.9$ Hz, 1H), 3.95 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 164.29$, 163.70, 163.50, 158.16, 138.49, 138.0, 131.60, 131.43, 130.57, 130.47, 128.92, 128.47, 128.43, 127.48, 127.07, 121.27, 115.50, 111.69, 55.85. **GC-MS** (M⁺) = 338.1

4-(Naphthalen-1-yl)-2,6-diphenylpyrimidine (24)¹³

163 mg; 91% yield; yellow solid; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.74-8.72$ (m, 2H), 8.39-8.37 (m, 1H), 8.33-8.31 (m, 2H), 8.0 (d, $J_{\rm H,H} = 8.4$ Hz, 1H), 7.98-7.96 (m, 1H), 7.91 (s, 1H), 7.81 (d, $J_{\rm H,H} = 7.1$ Hz, 1H), 7.64-7.53 (m, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 167.53$, 164.47, 164.38, 138.12, 137.34, 136.92, 134.09, 130.98, 130.79, 130.22, 129.03, 128.63, 127.94, 127.39, 126.99, 126.27, 125.52, 125.38, 115.42. **GC-MS** (M⁺) = 358.1.

2,4-Diphenyl-6-(thiophen-2-yl)pyrimidine (25)⁸

93 mg; 59% yield; white solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.69-8.66$ (m, 2H), 8.27-8.25 (m, 2H), 7.91 (dd, $J_{\rm H,H} = 3.8$ Hz, 1.0 Hz, 1H), 7.85 (s, 1H), 7.56-7.51 (m, 7H), 7.20 (dd, $J_{\rm H,H} = 4.9$ Hz, 3.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 164.65$, 164.52, 159.77, 143.45, 137.81, 137.42, 130.92, 130.82, 129.89, 128.99, 128.52, 128.39, 127.32, 127.14, 108.51. GC-MS (M⁺) = 314.1.

4-Cyclohexyl-2,6-diphenylpyrimidine (27)¹⁶

132 mg; 84% yield; yellow solid; ¹**H NMR** (400 MHz, CDCl₃): δ = 8.62-8.60 (m, 2H), 8.22-8.20 (m, 2H), 7.52-7.48 (m, 6H), 7.45 (s, 1H), 2.79 (tt, $J_{\rm H,H}$ = 11.8 Hz, 3.4 Hz, 1H), 2.06 (dd, $J_{\rm H,H}$ = 13.4 Hz, 1.6 Hz, 2H), 1.91 (dt, $J_{\rm H,H}$ = 13.0 Hz, 3.3 Hz, 2H), 1.82-1.77 (m, 1H), 1.72-1.62 (m, 2H), 1.52-1.31 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 175.48, 164.13, 163.94, 138.50,

137.77, 130.58, 130.41, 128.90, 128.46, 127.28, 46.43, 32.29, 26.44, 26.13. **GC-MS** (M^+) = 314.1.

4,6-Diphenyl-2-(3-(trifluoromethyl)phenyl)pyrimidine (28)

105 mg; 56% yield; white solid; ¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.98$ (s, 1H), 8.91 (d, $J_{\text{H,H}} = 7.8$ Hz, 1H), 8.29-8.27 (m, 4H), 8.05 (s, 1H), 7.76 (d, $J_{\text{H,H}} = 7.6$ Hz, 1H), 7.65 (t, $J_{\text{H,H}} = 7.7$ Hz, 1H), 7.60-7.55 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 165.11$, 163.25, 139.06, 137.28, 131.76, 131.11, 129.11, 129.01, 127.40, 127.18, 125.38, 110.99. **HRMS** (ESI): Calcd. for C₂₃H₁₆F₃N₂ [M+H]+: 377.1266; found: 377.1271.

2-(4-Fluorophenyl)-4,6-diphenylpyrimidine (29)

104 mg; 64% yield; white solid; ¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.74-8.71$ (m, 2H), 8.28-8.26 (m, 4H), 8.0 (s, 1H), 7.58-7.54 (m, 6H), 7.20 (t, $J_{\rm H,H} = 8.6$ Hz, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 166.07$, 164.91, 163.72, 163.58, 137.54, 134.42, 130.92, 130.71, 130.62, 129.03, 127.36, 115.55, 115.33, 110.28. **HRMS** (ESI): Calcd. for C₂₂H₁₆FN₂ [M+H]⁺: 327.1298; found: 327.1306.

4,6-Diphenylpyrimidin-2-amine (30)¹⁷

77 mg; 62% yield; brown solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.06-8.03$ (m, 4H), 7.50-7.48 (m, 6H), 7.46 (s, 1H), 5.23 (brs, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 166.34$, 163.68, 137.83, 130.56, 128.87, 127.20, 104.45. GC-MS (M⁺) = 247.1.

2-Methyl-4,6-diphenylpyrimidine (31)¹³

82 mg; 67% yield; brown solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13-8.11$ (m, 4H), 7.88 (s, 1H), 7.52-7.51 (m, 6H), 2.86 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 168.66$, 164.98, 137.60, 130.72, 129.03, 127.35, 110.21, 26.60. GC-MS (M⁺) = 246.1.

7. Copies of ¹H and ¹³C NMR Spectra of the Products

8. References

- 1. SMART & SAINT Software Reference Manuals, version 6.45, Bruker Analytical X-ray Systems, Inc., Madison, WI, 2003.
- 2. G. M. Sheldrick, SADABS a software for empirical absorption correction; version 2.05; Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 2002.
- 3. G. M. Sheldrick, A short history of SHELX, 2008.
- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- 5. A. L. Spek, The University of Utrecht, Utrecht, The Netherlands, 2013.
- 6. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, 39, 453-457.
- 7. N. Deibl, K. Ament and R. Kempe, J. Am. Chem. Soc., 2015, 137, 12804-12807.
- 8. M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier and K. Kirchner, *J. Am. Chem. Soc.*, 2016, 138, 15543-15546.
- 9. I. R. Baxendale, S. C. Schou, J. Sedelmeier and S. V. Ley, *Chem. Eur. J.*, 2010, 16, 89-94.
- 10. E. Gayon, M. Szymczyk, H. Gérard, E. Vrancken and J.-M. Campagne, *J. Org. Chem.*, 2012, 77, 9205-9220.
- 11. T. Yamamoto, H. Hasegawa, T. Hakogi and S. Katsumura, Org. Lett., 2006, 8, 5569-5572.
- 12. A. Herrera, R. Martínez-Alvarez, M. Chioua, R. Chatt, R. Chioua, A. Sánchez and J. Almy, *Tetrahedron*, 2006, 62, 2799-2811.
- 13. T. Shi, F. Qin, Q. Li and W. Zhang, Org. Biomol. Chem., 2018, 16, 9487-9491.
- 14. K. S. Vadagaonkar, H. P. Kalmode, S. Prakash and A. C. Chaskar, *New J. Chem.*, 2015, 39, 3639-3645.
- 15. D. Liu, W. Guo, W. Wu and H. Jiang, J. Org. Chem., 2017, 82, 13609-13616.
- 16. Y. Satoh, K. Yasuda and Y. Obora, Organometallics, 2012, 31, 5235-5238.
- 17. H. Noda, Y. Asada, T. Maruyama, N. Takizawa, N. N. Noda, M. Shibasaki and N. Kumagai, *Chem. Eur. J.*, 2019, 25, 4299-4304.