[{AgL}₂Mo₈O₂₆]ⁿ⁻ complexes: combined experimental and theoretical study

Anastasia V. Chupina,^{a,b} Vladimir Shayapov,^a Alexander S. Novikov,^c Victoria V. Volchek^a, Enrico Benassi^{*},^d Pavel A. Abramov^{*},^{a,e} Maxim N. Sokolov^{a,b}

Supporting Information

Table of contents

Part A. Synthesis and characterization.
Fig. S1. The dependence of reflectance coefficient on temperature at 550 nm for 11
Fig. S2. Optimized molecular geometries of the three compounds investigated computationally, <i>viz</i> . $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^{2-}$ (a), $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$ (b), and $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$ (c). Labels of the atoms forming the $Ag\{Mo_4O_{13}\}$ moiety (d). Legend of colors: white (Hydrogen), grey (Carbon), blue (Nitrogen), red (Oxygen), orange (Phosphorus), lilac (Arsenic), violet (Antimony), light blue (Silver), and teal green (Molybdenum)12
Fig. S3. Plot of the isosurface of the frontier molecular orbitals (HOMO on the left and LUMO on the right) of $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}_2^{2^-}(a), [Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2^-}(b), and [Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2^-}(c).$ Isovalue = 0.02 a.u
Fig. S4. Plot of the Non-Covalent Interaction (NCI) isosurfaces of $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^{2-}$ (a), $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$ (b), and $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$ (c) around the coordination sphere of Ag atom. $s = 0.5$ a.u.; colour scale from -0.012 a.u. (blue) < sign (λ_2) $\rho(r) < +0.012$ a.u. (red)14
Table S1. Some geometrical parameters of the optimized structures: r (interatomic distance in 10 ⁻¹⁰ m) and α (bond angle in degrees). Atoms numbers refer to Fig. S2(d). Asterisks refer to atoms belonging to the other sub-unit
Part B. Optimized Geometries16
Part C. Bader's QAIM Analysis23
Fig. S5. Critical Points (CPs) of $[Ag{Mo_4O_{13}}{PPh_2Py}]_2^{2-}$ (a), $[Ag{Mo_4O_{13}}{AsPh_3}]_2^{2-}$ (b), and $[Ag{Mo_4O_{13}}{SbPh_3}(DMF)]_2^{2-}$ (c). Legend of colors: Yellow (BCP), Wine (RCP), and Violet (CCP)24
Part D. Natural Bond Orbital Analysis25
Table S2. Natural Bond Orbital (NBO) analysis for $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^2^-$. Values of delocalization energy $E^{(2)}$ shown above 100.00 kcal/mol

Table S3. Natural Bond Orbital (NBO) analysis for [Ag{Mo ₄ O ₁₃ }{PPh ₂ Py}] ₂ ^{2–} . Nat composition of the NBOs	ure, occupancy and 26
Table S4. Natural Bond Orbital (NBO) analysis for [Ag{Mo ₄ O ₁₃ }{AsPh ₃ }] ₂ ^{2–} . Value energy <i>E</i> ⁽²⁾ shown above 100.00 kcal/mol.	es of delocalization 27
Table S5. Natural Bond Orbital (NBO) analysis for $[Ag{Mo_4O_{13}}{AsPh_3}]_2^{2-}$. Natu composition of the NBOs	re, occupancy and 28
Table S6. Natural Bond Orbital (NBO) analysis for [Ag{Mo ₄ O ₁₃ }{SbPh ₃ }(DMF)] ₂ ²⁻ delocalization energy <i>E</i> ⁽²⁾ shown above 100.00 kcal/mol	. Values of
Table S7. Natural Bond Orbital (NBO) analysis for $[Ag{Mo_4O_{13}}{SbPh_3}(DMF)]_2^2$ and composition of the NBOs	Nature, occupancy
Table S8. Natural Atomic Charges (NAC), in units of elementary charge	31
Part E. IR data	32
Fig. S6. Computed infrared spectra of [Ag{Mo ₄ O ₁₃ }{PPh ₂ Py}] ₂ ^{2–} (a), [Ag{Mo ₄ O ₁₃ } [Ag{Mo ₄ O ₁₃ }{SbPh ₃ }(DMF)] ₂ ^{2–} (c) in the near and far region. Harmonic approxin scale factor is applied.	{AsPh ₃ }] ₂ ^{2–} (b), and nation is assumed. No 32
Fig. S7. Experimental IR spectra (200 - 600 cm $^{-1}$) for 2-4	33
Fig. S8. Comparison between experimental and computed infrared wavenumb values are reported in <i>Italics</i> . Displacement vectors are depicted on the molect	ers (in cm ⁻¹). Computed ular structure
Part F. Non-valence contacts	40
Fig. S9. Contour line diagram of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$, bond paths a surfaces (left) and RDG isosurface (right) referring to halogen bonding Cl···O in structure of Cl. Bond critical points (3, -1) are shown in blue, nuclear critical points brown. Length units – Å, RDG isosurface values are given in a.u.	nd selected zero-flux supramolecular bints (3, –3) – in pale 40
Fig. S10. Contour line diagram of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$, bond paths surfaces (left) and RDG isosurface (right) referring to halogen bonding Br…O in structure of Br. Bond critical points (3, –1) are shown in blue, nuclear critical points brown. Length units – Å, RDG isosurface values are given in a.u.	and selected zero-flux supramolecular pints (3, –3) – in pale 40
Table S9. Cartesian atomic coordinates for model supramolecular associates	41
Part G. Single crystal x-ray diffraction analysis data	52
Table S10. XRD Experimental details	52
Part H. Chromatography and ESI-MS data.	
Fig. S11. HPLC-UV chromatograms of $(NBu_4)_4[\beta-Mo_8O_{26}]$ solutions: fresh (left) a	and aged (right)55
Fig. S12. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms for 1	
Fig. S13. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms for 2	
Fig. S14. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms for 3	57
Fig. S15. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms for 4	57
Fig. S16. Full ESI-MS spectrum of 1 in CH ₃ CN. Experimental peaks have negative data have positive intensity	e intensities, calculated 58
Table S11. Peak assignment for the spectrum of 1 in CH ₃ CN	59
Fig. S17. Comparison of calculated (positive intensity) and observed (negative i patterns for $\{H^+ + [Mo_6O_{19}]^{2-}\}$ peak.	ntensity) isotopic 60

Fig. S18. Comparison of calculated (positive intensity) and observed (negative intensity) isotopic	
patterns for $\{2Ag^+ + [Mo_8O_{26}]^{4-}\}$ peak.	60
Fig. S19. The HPLC-UV chromatogram of the specially prepared mixture of $(Bu_4N)_4[\beta-Mo_8O_{26}]$ (the	e first
peak) and $(Bu_4N)_2[Mo_6O_{19}]$ in CH_3CN	61

Part A. Synthesis and characterization.

General information. $(NBu_4)_4[\beta-Mo_8O_{26}]$ and $(NBu_4)_2[Mo_6O_{19}]$ were synthesized according to the standard procedures. All another reagents were of commercial purity (Sigma Aldrich) and were used without any purification. Elemental analysis was carried out on a Eurovector EA 3000 CHN analyzer. ESI-MS spectra were recorded on an Agilent (6130 Quadrupole MS, 1260 infinity LC) in m/z 400–3000 diapason in the mixture of CH₃CN/H₂O/CH₃COOH.

Complex (NBu₄)₂[{AgPPh₂Py}₂Mo₈O₂₆]·DMF (1): 0.016 g (0.095 mmol) of solid AgNO₃ was added to the solution of 0.100 g (0.046 mmol) (NBu₄)₄[Mo₈O₂₆] in 5 mL DMF. After that 0.024 g (0.091 mmol) of PPh₂Py was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of (NBu₄)₂[{AgPPh₂Py}₂Mo₈O₂₆]·DMF·Et₂O was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Ether molecules of crystallization were lost during drying according to the EA. Yield 0.109 g (98% based on POM). IR (ATR, cm⁻¹): 1659 (m), 1567 (w), 1477 (w), 1433 (w), 1383 (w), 1092 (w), 947 (s), 928 (s), 897 (vs), 885 (vs), 826 741 (m), (s), 772 (m), 692 (vs), 644 (vs). Analysis: calcd for (NBu₄)₂[{AgPPh₂Py}₂Mo₈O₂₆]·DMF C, H, N (%): 33.2, 4.3, 2.8; found C, H, N (%): 33.6, 4.5, 3.0.

Complex (NBu₄)₂[{AgPPh₃}₂Mo₈O₂₆]·2DMF (2): 0.028 g (0.166 mmol) of solid AgNO₃ was added to the solution of 0.179 g (0.083 mmol) (NBu₄)₄[Mo₈O₂₆] in 9 mL DMF. After that 0.043 g (0.164 mmol) of PPh₃ was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of (NBu₄)₂[{AgPPh₃}₂Mo₈O₂₆]·2DMF was collected after 2 days. Crystals were washed several times with Et₂O and dried in air.

Yield 0.184 g (92% based on POM). IR (ATR, cm⁻¹): 1477 (m), 1378 (w), 1300 (w), 1157 (w), 930 (vs), 888 (vs), 826 (s), 771 (m), 685 (vs), 644 (vs), 570 (s). Analysis, calcd for **2** C, H, N (%): 34.6, 4.5, 2.2; found C, H, N (%): 34.8, 4.5, 2.3.

Complex (NBu₄)₂[{AgAsPh₃}₂Mo₈O₂₆]·2DMF (3): 0.027 g (0.16 mmol) of solid AgNO₃ was added to the solution of 0.173 g (0.08 mmol) (NBu₄)₄[Mo₈O₂₆] in 8 mL DMF. After that 0.049 g (0.16 mmol) of AsPh₃ was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of (NBu₄)₂[{AgAsPh₃}₂Mo₈O₂₆]·2DMF was collected after 2 days. Crystals were washed several times with Et₂O and dried in air.

Yield 0.181 g (90.5% based on POM). IR (ATR, cm⁻¹): 1661 (s), 1483 (w), 1434 (m), 1384 (m), 1248 (w), 1089 (w), 947 (s), 926 (s), 897 (vs), 885 (vs), 828 (s), 740 (m), 692 (vs), 682 (vs), 648 (vs), 571 (m). Analysis, calcd for **3** C, H, N (%): 33.4, 4.4, 2.1; found C, H, N (%): 33.5, 4.4, 2.3.

Complex (NBu₄)₂[{Ag(SbPh₃)}₂Mo₈O₂₆]·DMF (4): 0.016 g (0.095 mmol) of solid AgNO₃ was added to the solution of 0.1 g (0.046 mmol) (NBu₄)₄[Mo₈O₂₆] in 5 mL DMF. After that 0.032 g (0.91 mmol) of SbPh₃ was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of (NBu₄)₂[{Ag(SbPh₃)(DMF)}₂Mo₈O₂₆] was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. One DMF molecule of crystallization was lost during drying according to the EA. Yield 0.077 g (65% based on POM). IR (ATR, cm⁻¹): 1478 (m), 1431 (m), 1378 (w), 1066 (w), 997 (w), 960 (m), 927 (s), 887 (vs), 829 (s), 731 (s), 679 (vs), 644 (s), 575

(s). Analysis, calcd for $(NBu_4)_2[{Ag(SbPh_3)}_2Mo_8O_{26}]$ ·DMF C, H, N (%): 31.8, 4.1, 1.6; found C, H, N (%): 31.5, 4.0, 1.2.

Complex (NBu₄)₂[{AgC₅H₄NCl}₂Mo₈O₂₆]·2DMF (5): 0.016 g (0.095 mmol) of solid AgNO₃ was added to the solution of 0.1 g (0.046 mmol) (NBu₄)₄[Mo₈O₂₆] in 5 mL DMF. After that 9 \muL (0.096 mmol) of C₅H₄NCl was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of 5 was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Yield 0.095 g (98% based on POM). IR (ATR, cm⁻¹): 1655 (m), 1472 (m), 1422 (w), 1379 (m), 1124(w), 1107 (m), 1027 (w), 954 (m), 934 (vs), 892 (vs), 827(s), 797 (s), 736 (m), 677 (vs), 648(vs), 570 (s). Analysis, calcd for **5** C, H, N (%): 25.4, 4.1, 3.7; found C, H, N (%): 25.2, 3.9, 4.0.

Complex (NBu₄)₂[{AgC₅H₄NBr}₂Mo₈O₂₆]·2DMF (6): 0.016 g (0.095 mmol) of solid AgNO₃ was added to the solution of 0.1 g (0.046 mmol) (NBu₄)₄[Mo₈O₂₆] in 5 mL DMF. After that 9 \muL (0.096 mmol) of C₅H₄NBr was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of 6 was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Yield 0.093 g (92% based on POM). IR (ATR, cm⁻¹): 1652 (m), 1478 (m), 1420 (m), 1380 (m), 1097 (m), 1025 (m), 954 (m), 934 (vs), 893 (vs), 828 (s), 794 (m), 771(s), 683 (vs), 650 (vs), 570 (s). Analysis, calcd for **6** C, H, N (%): 24.4, 4.0, 3.6; found C, H, N (%): 24.6, 3.8, 3.9.

Complex (NBu₄)₂[{AgC₅H₄NI}₂Mo₈O₂₆]·2DMF (7): 0.016 g (0.095 mmol) of solid AgNO₃ was added to the solution of 0.1 g (0.046 mmol) (NBu₄)₄[Mo₈O₂₆] in 5 mL DMF. After that 0.019 g (0.092 mmol) of C₅H₄NI was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of 7 was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Yield 0.102 g (97% based on POM). IR (ATR, cm⁻¹): 1650 (s), 1479 (m), 1416 (m), 1379 (m), 1092 (m), 1024 (m), 954 (m), 932 (s), 892 (vs), 827 (s), 791 (m), 701 (s), 685 (vs), 677 (vs), 646 (vs), 634 (vs), 596 (m), 570 (s). Analysis, calcd for **7** C, H, N (%): 23.5, 3.9, 3.4; found C, H, N (%): 23.1, 3.3, 3.5.

Complex (NBu₄)₂[{AgC₅H₄NNH₂}₂Mo₈O₂₆] (8): 0.032 g (0.189 mmol) of solid AgNO₃ was added to the solution of 0.2 g (0.092 mmol) (NBu₄)₄[Mo₈O₂₆] in 10 mL DMF. After that 0.017 g (0.18 mmol) of C₅H₄NNH₂ was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of 8 was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Yield 0.185 g (97% based on POM). IR (ATR, cm⁻¹): 1630 (m), 1561 (w), 1487 (m), 1474 (m), 1447 (m), 1409 (w), 1384 (w), 1289 (w), 1159 (w), 1053 (w), 959 (m), 943 (s), 930 (s), 889 (vs), 827 (s), 783 (m), 681 (vs), 647 (vs), 565 (s). Analysis, calcd for **8** C, H, N (%): 24.3, 4.1, 4.0; found C, H, N (%): 24.8, 4.0, 4.3.

Complex (NBu₄)₂[{AgC₅H₄NCH₃}₂Mo₈O₂₆] (9): 0.016 g (0.095 mmol) of solid AgNO₃ was added to the solution of 0.1 g (0.046 mmol) (NBu₄)₄[Mo₈O₂₆] in 5 mL DMF. After that 9 \muL (0.097 mmol) of C₅H₄NCH₃ was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of 9 was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Yield: 0.95 g (99% based on POM). IR (ATR, cm⁻¹): 1601 (w), 1477 (m), 1451 (m), 1378 (w), 1300 (w), 1157 (w), 953 (m), 930 (vs), 888 (vs), 826 (s), 771 (m), 685 (vs), 644 (vs), 570 (s). Analysis, calcd for **9** C, H, N (%): 25.5, 4.2, 2.7; found C, H, N (%): 25.8, 4.0, 3.1.

Complex $(NBu_4)_2[{AgC_5H_2N(CH_3)_3}_2Mo_8O_{26}] \cdot 2DMF$ (10): 0.016 g (0.095 mmol) of solid AgNO₃ was added to the solution of 0.1 g (0.046 mmol) (NBu₄)₄[Mo₈O₂₆] in 5 mL DMF. After that 12 µL (0.091 mmol) of C₅H₄N(CH₃)₂ was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of 10 was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Yield 0.095 g (97% based on POM). IR (ATR, cm⁻¹): 1665 (m), 1617 (m), 1477 (m), 1456 (m), 1377 (m), 1088 (w), 1024 (w), 956 (m), 930 (s), 887 (vs), 832 (s), 681 (s), 648 (s), 573 (s). Analysis, calcd for 10 C, H, N (%): 27.6, 4.7, 3.7; found C, H, N (%): 28.2, 4.7, 3.7.

Complex (NBu₄)₂[{AgC₅H₃N(NH₂)₂}₂Mo₈O₂₆] (11): 0.032 g (0.189 mmol) of solid AgNO₃ was added to the solution of 0.2 g (0.092 mmol) (NBu₄)₄[Mo₈O₂₆] in 10 mL DMF. After that 0.02 g (0.183 mmol) of C₅H₄N(NH₂)₂ was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of 11 was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Yield 0.133 g (69% based on POM). IR (ATR, cm⁻¹): 2152 (w), 1660 (m), 1622 (m), 1580 (m), 1469 (s), 1384 (w), 1302 (w), 1096 (w), 940 (s), 924 (s), 900 (vs), 885 (vs), 837 (s), 784 (m), 685 (vs), 650 (vs). Analysis, calcd for **11** C, H, N (%): 23.8, 4.1, 5.3; found C, H, N (%): 24.1, 4.0, 5.9.

Complex [Ag₂(PPh₂Py)₂(DMF)₄][Mo₆O₁₉] (12):

0.025 g (0.148 mmol) of solid AgNO₃ was added to the solution of 0.1 g (0.073 mmol) (NBu₄)₂[Mo₆O₁₉] in 5 mL DMF. After that 0.038 g (0.144 mmol) of PPh₂Py was added to the reaction mixture under stirring. 30 minutes later reaction media was transferred into the Et₂O atmosphere at 5 °C. A crop of colorless crystals of **13** was collected after 2 days. Crystals were washed several times with Et₂O and dried in air. Yield 0.074 g (53% based on POM). IR (ATR, cm⁻¹): 1644 (vs), 1580 (w), 1480 (w), 1455 (w), 1435 (m), 1381 (m), 1253 (w), 1096 (m), 950 (vs), 790 (vs), 747 (s), 693 (s), 661 (s), 596 (m). Analysis, calcd for 13 C, H, N (%): 28.6, 3.0, 4.3; found C, H, N (%): 28.0, 2.7, 3.8.

X-ray diffraction. Crystallographic data and refinement details for 1 - 8, 10 - 12 are given in Table S10 (see Electronic supplementary information). The diffraction data were collected on a New Xcalibur (Agilent Technologies) diffractometer with MoK_{α} radiation ($\lambda = 0.71073$) by doing φ scans of narrow (0.5°) frames at 130 K. Absorption correction was done empirically using SCALE3 ABSPACK (CrysAlisPro, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET)). Structure was solved by SHELXT¹ and refined by full-matrix least-squares treatment against $|F|^2$ in anisotropic approximation with SHELX 2014/7² in ShelXle³ program. Hydrogen atoms were refined in geometrically added positions. The crystallographic data have been deposed in the Cambridge Crystallographic Data Centre under the deposition codes CCDC 1959363-1959373.

The Computational **Details.** molecular geometry of the ground state of $[Ag\{Mo_4O_{13}\}PPh_2Py]_2^{2-}, [Ag\{Mo_4O_{13}\}AsPh_3]_2^{2-}, and [Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-} was$ fully optimized in the gas phase at the Density Functional Theory (DFT) level. The B3LYP 4-7 functional was used coupled with the triple- ζ 6-311++G** basis set for light elements (viz. H, C, N and O) the double- ζ LANL2DZ⁸⁻¹¹ basis set for the valence shell of the heavy elements (*viz.* Mo and Ag) whose inner electrons were model using the LANL2DZ pseudo-potential, whereas for the pnictogens the triple- ζ 6-311+G* basis set was used for P and As, and the LANL2DZ basis/pseudo for Sb. Empirical dispersion GD3 with Becke-Johnson damping (GD3BJ)¹² was also included.

The optimized structures were submitted to vibrational frequencies calculations in harmonic approximation; the stationary points were checked to be "genuine" minima. The IR intensities were also computed.

Natural Bond Orbital (NBO)^{13–19} analysis was performed on the Hartree-Fock (HF) density computed for the optimized geometries with the aforementioned basis sets. Analysis of possible dispersive interactions was performed using Non-Covalent Interaction (NCI) index along with Reduced Density Gradient (RDG).^{20–23}

To investigate the presence and location of critical points, the Bader analysis based on the quantum atoms in molecules (QAIM) theory ^{24–26} was applied to the electron densities of the optimized structures.

The integration grid was set up to 250 radial shells and 974 angular points on each centre. Accuracy for 2-electron integrals calculation was set up to 10^{-14} a.u. The convergence criteria for the self-consistent field were set to 10^{-12} for the RMS change in the density matrix and 10^{-10} for the maximum change in the density matrix. The convergence criteria for optimizations were set to 2×10^{-6} a.u. for the maximum force, 1×10^{-6} a.u. for the RMS force, 6×10^{-6} a.u. for the maximum displacement and 4×10^{-6} a.u. for the RMS displacement.

All calculations were performed using the GAUSSIAN G09.D01 package²⁷, except for the research of the critical points, for which the AIMPAC code²⁸ was employed, and for the NCI investigation, for which a homemade code was used.

Computational details (X...O interactions). The single point calculations based on the experimental X-ray geometries of **5-7** have been carried out at the DFT level of theory using the M06 functional²⁹ with the help of Gaussian-09²⁷ program package. The Douglas–Kroll–Hess 2nd order scalar relativistic calculations requested relativistic core Hamiltonian were carried out using the DZP-DKH basis sets^{30–33} for all atoms. The topological analysis of the electron density distribution with the help of the atoms in molecules (QTAIM) method developed by Bader²⁴ has been performed by using the Multiwfn program.³⁴ The Wiberg bond indices were computed by using the Natural Bond Orbital (NBO) partitioning scheme.³⁵ The Cartesian atomic coordinates for model supramolecular associates are presented in Supporting Information, **Table S1**.

HPLC-ICP-AES. Separations were performed with HPLC system Milichrom A-02 (EcoNova, Russia) equipped with a two-beam spectrophotometric detector at the wavelength range of 190-360 nm in ion-pair mode of reversed phase chromatography (ProntoSIL 120-5-C18AQ, 2x75 mm). Reversed-phase C18 column was preliminary coated using solution of 1.5 mM tetrabutylammonium hydroxide (TBAOH). Good quality separation in terms of efficiency, peak shape and retention time was achieved in gradient mode (DI water (eluent A) and acetonitrile (eluent B) with gradual increase in acetonitrile concentration. The gradient mode conditions: 0-2 min, 0-40% B; 2-12.2 min, 40-100% B; flow rate - 0.18 mL min⁻¹. Detection wavelength: 250 nm. An ICP-AES spectrometer iCap 6500 Duo (ThermoFisher Scientific, USA) with concentric nebulizer was applied as detector in hyphenated HPLC-ICP-AES mode. For quantitative estimations the Ag 328.0 nm, Mo 281.6 nm spectral lines were selected. All measurements were performed in three replicates. The data acquisition and processing was carried out with iTEVA (Thermo Scientific, USA) software. The ICP-AES working parameters: power supply – 1150 W, nebulizer Ar flow rate – 0.70 L min⁻¹, auxiliary – 0.50 L min⁻¹, cooling – 12 L min⁻¹. In order to eliminate plasma quenching we diluted the liquid coming out of the column into the spray chamber with deionized water. The steady state of the plasma and the optimal values of analytical signals were finally achieved at the eluent flow rate of 0.18 mL min⁻¹, and the eluent velocity of 3 mL min⁻¹ (peristaltic pump speed -75 rpm). Under these conditions, stable plasma burning was observed even when the share of acetonitrile in the gradient profile attained 65%.

- 1 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 2 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 3 C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *J. Appl. Crystallogr.*, 2011, 44, 1281–1284.
- 4 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 5 C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789.
- 6 S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200–1211.
- 7 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627.
- 8 T. H. Dunning and P. J. Hay, in *Methods of Electronic Structure Theory*, Springer US, Boston, MA, 1977, pp. 1–27.
- 9 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284–298.
- 10 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270–283.
- 11 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.
- 12 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 13 J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211–7218.
- 14 A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066–4073.
- 15 A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735–746.
- 16 A. E. Reed and F. Weinhold, J. Chem. Phys., 1985, 83, 1736–1740.
- 17 J. E. Carpenter and F. Weinhold, J. Mol. Struct. THEOCHEM, 1988, 169, 41-62.
- 18 A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, **88**, 899–926.
- 19 F. Weinhold and J. E. Carpenter, in *The Structure of Small Molecules and Ions*, Springer US, Boston, MA, 1988, pp. 227–236.
- 20 E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang, *J. Am. Chem. Soc.*, 2010, 132, 6498–6506.
- 21 H. J. Bohórquez, C. F. Matta and R. J. Boyd, *Int. J. Quantum Chem.*, , DOI:10.1002/qua.22662.
- 22 P. Cacciani, P. Čermák, J. Cosléou, J. El Romh, J. Hovorka and M. Khelkhal, *Mol. Phys.*, 2014, **112**, 2476–2485.
- 23 J. Andrés, S. Berski, J. Contreras-García and P. González-Navarrete, J. Phys. Chem. A, 2014, 118, 1663–1672.
- 24 R. F. W. Bader, Chem. Rev., 1991, 91, 893–928.
- 25 R. F. W. Bader and H. Essén, J. Chem. Phys., 1984, 80, 1943–1960.

- 26 R. F. W. Bader, Atoms in molecules : a quantum theory, Clarendon Press, 1990.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 09*, .
- 28 F. W. Biegler-könig, R. F. W. Bader and T.-H. Tang, *J. Comput. Chem.*, 1982, **3**, 317–328.
- 29 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 30 C. L. Barros, P. J. P. de Oliveira, F. E. Jorge, A. Canal Neto and M. Campos, *Mol. Phys.*, 2010, **108**, 1965–1972.
- 31 A. Canal Neto and F. E. Jorge, *Chem. Phys. Lett.*, 2013, **582**, 158–162.
- 32 R. C. de Berrêdo and F. E. Jorge, J. Mol. Struct. THEOCHEM, 2010, 961, 107–112.
- 33 F. E. Jorge, A. Canal Neto, G. G. Camiletti and S. F. Machado, *J. Chem. Phys.*, 2009, **130**, 064108.
- 34 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580–592.
- 35 E. D. Glendening, C. R. Landis and F. Weinhold, *Wiley Interdiscip. Rev. Comput. Mol. Sci.*, 2012, **2**, 1–42.

Fig. S1. The dependence of reflectance coefficient on temperature at 550 nm for 11.

Fig. S2. Optimized molecular geometries of the three compounds investigated computationally, *viz.* $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^{2-}$ (a), $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$ (b), and $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$ (c). Labels of the atoms forming the $Ag\{Mo_4O_{13}\}$ moiety (d). Legend of colors: white (Hydrogen), grey (Carbon), blue (Nitrogen), red (Oxygen), orange (Phosphorus), lilac (Arsenic), violet (Antimony), light blue (Silver), and teal green (Molybdenum).

(b) $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$

Fig. S3. Plot of the isosurface of the frontier molecular orbitals (HOMO on the left and LUMO on the right) of $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}_2^{2-}$ (a), $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$ (b), and $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$ (c). | Isovalue | = 0.02 a.u.

(c) $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$

Fig. S4. Plot of the Non-Covalent Interaction (NCI) isosurfaces of [Ag{Mo₄O₁₃}{PPh₂Py}]₂²⁻ (a), $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$ (b), and $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$ (c) around the coordination sphere of Ag atom. s = 0.5 a.u.; colour scale from -0.012 a.u. (blue) < sign $(\lambda_2) \rho(r) < +0.012 a.u. (red).$

								Х	
							Р	As	Sb
r	Ag	(1)	Х				2.454	2.547	2.689
r	Ag	(1)	Oc	(6)			3.274	3.221	3.219
r	Ag	(1)	O_a	(7)			2.567	2.530	2.554
r	Ag	(1)	Oa	(8)			2.292	2.289	2.306
r	Ag	(1)	Oa	(9)			2.563	2.519	2.524
r	Ag	(1)	Oa	(10)			2.812	2.817	2.770
r	Mo	(2)	Oa	(7)			1.741	1.744	1.730
r	Mo	(3)	Oa	(8)			1.759	1.759	1.756
r	Mo	(4)	Oa	(9)			1.741	1.741	1.747
r	Mo	(5)	Oa	(10)			1.725	1.725	1.734
r	Mo	(2)	Oe	(11)			1.709	1.711	1.708
r	Mo	(3)	Oe	(12)			1.711	1.711	1.708
r	Mo	(4)	Oe	(13)			1.714	1.712	1.714
r	Mo	(5)	Oe	(14)			1.774	1.771	1.769
r	Mo	(2)	Oc	(6)			2.524	2.382	2.095
r	Mo	(3)	Oc	(6)			2.598	2.620	2.367
r	Mo	(4)	Oc	(6)			2.300	2.362	2.592
r	Mo	(5)	Oc	(6)			2.086	2.100	2.400
r	Mo	(2)	O_b	(18)			1.973	1.997	1.966
r	Mo	(2)	O_b	(15)			1.901	1.911	1.974
r	Mo	(3)	O_b	(15)			1.938	1.924	1.987
r	Mo	(3)	O_b	(16)			1.917	1.920	1.907
r	Mo	(4)	O_b	(16)			1.921	1.915	1.937
r	Mo	(4)	O_b	(17)			1.990	1.993	1.917
r	Mo	(5)	O_b	(17)			1.965	1.976	1.919
r	Mo	(5)	Ob	(18)			1.984	1.963	1.999
r	Mo	(4)	O _e *				2.248	2.253	2.373
r	Mo	(2)	O _c *				2.403	2.390	2.402
r	Oa	(7)	H'				3.772	2.106	2.247
r	Oa	(10)	H'				2.411	2.895	2.730
r	Oa	(9)	H"				3.609	2.336	2.303
r	Oa	(10)	H"				2.639	2.364	2.462
α	x		Aσ	(1)	O _c	(6)	1291	125.6	126.9

Table S1. Some geometrical parameters of the optimized structures: r (interatomic distance in 10⁻¹⁰ m) and α (bond angle in degrees). Atoms numbers refer to Fig. S2(d). Asterisks refer to atoms belonging to the other sub-unit.

Part B. Optimized Geometries

The Cartesian coordinates of the atomic positions for the optimized structures are reported in units of 10^{-10} m.

(1) $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^{2-}$

47	-4.107232	0.131600	-1.765984
47	4.107232	-0.131600	1.765984
42	-1.300413	2.520356	-0.979117
42	-0 956589	0 363963	-3 576810
12	_1 218092	-2 200068	-1 159560
10	1 474046	2.20000	1 002040
42	-1.4/4846	-0.138/30	1.003948
42	1.300413	-2.520356	0.9/911/
42	0.956589	-0.363963	3.576810
42	1.218092	2.209968	1.459560
42	1.474846	0.138730	-1.003948
15	-6.060165	0.060052	-0.280960
15	6.060165	-0.060052	0.280960
8	-3.026956	2.377289	-1.149880
8	-2.715142	0.351143	-3.573664
8	-2.952181	-2.150163	-1.603357
8	-3 195314	-0 149422	0 879242
8	-0 765179	2 109173	-2 756720
8	-0 997063	4 196329	-0 839301
8	-1 135270	1 810706	0.000001
0	-1.135270	1.010700	1 001605
0	-0.925615	0.024393	-1.001605
8	-0.502333	0.55/029	-5.215250
8	-0./13691	-1.492777	-3.168441
8	-0.786078	-3.856161	-1.660860
8	-1.062085	-1.995750	0.512794
8	-1.127039	-0.299156	2.736020
8	3.026956	-2.377289	1.149880
8	2.715142	-0.351143	3.573664
8	2.952181	2.150163	1.603357
8	3.195314	0.149422	-0.879242
8	0.765179	-2.109173	2.756720
8	0.997063	-4.196329	0.839301
8	1.135270	-1.810706	-0.854395
8	0 925613	-0 024593	1 001605
8	0.502333	-0 557029	5 215250
Q	0.302333	1 /02777	3 168//1
0	0.713091	1.492777	1 660960
0	1 0 0 0 0 0	1 005750	1.000000 0 E10704
0	1.062085	1.995750	-0.512/94
8	1.12/039	0.299156	-2.736020
/	-/.26609/	1.546078	1.683246
1	7.266097	-1.546078	-1.683246
6	-6.121299	1.407629	0.991079
6	-4.991054	2.198941	1.215726
6	-5.044844	3.162631	2.223568
6	-7.304748	2.477791	2.640761
6	-7.701194	0.220448	-1.087302
6	-6.207003	-1.469175	0.718703
6	-6.222468	3.305793	2.955071
6	-8.166060	1.489208	-1.466041
6	-8 446532	-0 910391	-1 447370
6	-5 212625	-2 449303	0 608864
6	_7 270270	_1 655507	1 606702
C C	-1.2/33/3	-1.00002/	175045
ю	-9.339U15	1.024283	-2.1/5245

6	-9.640262	-0.774423	-2.160560
6	-5 289515	-3 608710	1 386163
G	7 251026	0 016571	2 275710
0	-7.331936	-2.0103/1	2.373719
6	-10.102416	0.492243	-2.525295
6	-6.355020	-3.794078	2.268019
6	6.121299	-1.407629	-0.991079
6	1 001054	-2 100041	-1 215726
0	4.991034	-2.190941	-1.215726
6	5.044844	-3.162631	-2.223568
6	7.304748	-2.477791	-2.640761
6	7.701194	-0.220448	1.087302
6	6 207003	1 160175	_0 718703
0	0.207005	1.409175	-0.710703
6	6.222468	-3.305/93	-2.9550/1
6	8.166060	-1.489208	1.466041
6	8.446532	0.910391	1.447370
6	5 212625	2 110303	-0 608864
0	J.21202J	2.449505	1 606700
6	1.219319	1.65552/	-1.606/02
6	9.359015	-1.624283	2.175245
6	9.640262	0.774423	2.160560
6	5 289515	3 608710	-1 386163
C	7 251026	0.010710	1.000100
6	1.351936	2.8165/1	-2.3/5/19
6	10.102416	-0.492243	2.525295
6	6.355020	3.794078	-2.268019
1	-4 097602	2 070667	0 615096
1	1.007002	2.070007	0.010000
1	-4.1/0/35	3./81081	2.425//9
1	-8.248497	2.563809	3.185142
1	-6.308557	4.041159	3.755240
1	-7 592781	2 376921	-1 199331
1	0.005007	1 001425	1 1 1 2 2 4 7
T	-8.095667	-1.901425	-1.16264/
1	-4.374254	-2.311364	-0.070341
1	-8.039580	-0.882027	1.700830
1	-9 708982	2 618148	-2 457320
1	10 000701	1 ((1(5))	2.437320
T	-10.209/81	-1.004033	-2.431157
1	-4.499927	-4.355324	1.304398
1	-8.183098	-2.955179	3.069125
1	-11 034521	0 598205	-3 081899
1	6 407050	4 605041	2 000000
1	-6.407059	-4.695841	2.880089
1	4.097602	-2.070667	-0.615096
1	4.170735	-3.781081	-2.425779
1	8 248497	-2 563809	-3 185142
1	C 200EE7	4 041150	2 7 5 5 2 4 0
1	6.308557	-4.041159	-3.755240
1	7.592781	-2.376921	1.199331
1	8.095667	1.901425	1.162647
1	4 374254	2 311364	0 070341
1	0.020500	0.000007	1 700020
1	8.039580	0.882027	-1.700830
1	9.708982	-2.618148	2.457320
1	10.209781	1.664653	2.431157
1	4 499927	4 355324	-1 304398
1	0 102000	2 055170	2 0 6 0 1 2 5
1	8.183098	2.955179	-3.069125
1	11.034521	-0.598205	3.081899
1	6.407059	4.695841	-2.880089
1	-4 413267	1 144015	4 785461
1	1.113207	0 100107	5 072664
1	-4.4U/1/0	-0.13010/	J. 9/3004
1	-3.346525	-0.250039	4.530111
1	3.960704	1.458672	2.332495
1	7.724751	-0.474463	3.192760
- 1	0 015500	_1 101000	0 005600
1	9.UI33U6	-1.121926	0.903003
1	5.137672	-2.152057	-0.605497
1	8.863429	0.837840	-1.356220
1	7 917858	2 347664	2 569062
- 1	3 363611	1 362042	A 700150
1	110000.0	1.303043	4.122132
1	7.127893	-0.559692	5.593972
1	9.757390	-3.465384	0.689795
1	5.877638	-4.483887	-0.905026

1	11.068736	1.967388	-1.255476
1	10.103945	3.503765	2.657051
1	4.943416	0.356389	6.372057
1	8.194739	-5.161132	-0.260678
1	11.699797	3.311434	0.749245
1	6.113911	-1.187579	-3.460785
1	4.419853	2.424483	-3.810185
1	5.577108	2.432807	-5.179730
1	6.188914	2.401103	-3.493741
1	4.413267	-1.144015	-4.785461
1	4.407178	0.198107	-5.973664
1	3.346525	0.250039	-4.530111

(2) $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$

4/ 4.114985 1.635923 -0.07	2565
47 -4.114984 -1.635928 0.072	2572
42 1.259805 1.295961 2.280	260
42 1.088536 3.577037 -0.18	35912
42 1.422119 -1.082670 0.068	8621
42 1.285595 1.048569 -2.39	9082
42 -1.259800 -1.295953 -2.28	80251
42 -1.088530 -3.577030 0.185	5920
42 -1.422117 1.082679 -0.06	58614
42 -1.285595 -1.048559 2.399	086
33 5.996937 -0.079668 -0.05	53841
33 -5.996938 0.079659 0.053	8831
8 2.997349 1.327658 2.176	5328
8 2.847508 3.539158 -0.17	4566
8 3.143613 -1.000872 0.130	037
8 3.024172 1.114981 -2.28	32257
8 0.898564 1.440410 3.947	043
8 0.843085 3.054411 1.645	507
8 1.001097 -0.652383 1.950	0416
8 0.964565 0.964348 -0.03	39866
8 0.861992 2.859080 -1.95	6364
8 0.673506 5.234673 -0.27	7360
8 1.028250 -2.807008 0.162	2568
8 1.065302 -0.858498 -1.84	8212
8 0.953579 1.001048 -4.07	6403
8 -2.997344 -1.327653 -2.17	6319
8 -2.847503 -3.539158 0.174	1571
8 -3.143610 1.000881 -0.13	30028
8 -3.0241/2 -1.114969 2.282	263
8 -0.898559 -1.440401 -3.94	1/035
	1549/
	0100
	50408
8 -0.964564 -0.964338 0.039	0408 874
8 -0.964564 -0.964338 0.039 8 -0.861993 -2.859071 1.956 8 -0.673495 -5.234664 0.277	50408 9874 5370 7369
8 -0.964564 -0.964338 0.039 8 -0.861993 -2.859071 1.956 8 -0.673495 -5.234664 0.277 8 -1.028247 2.807018 -0.16	50408 9874 5370 7369
8 -0.964564 -0.964338 0.039 8 -0.861993 -2.859071 1.956 8 -0.673495 -5.234664 0.277 8 -1.028247 2.807018 -0.16 8 -1.065299 0.858508 1.848	50408 9874 5370 7369 52559 8219
8 -0.964564 -0.964338 0.039 8 -0.861993 -2.859071 1.956 8 -0.673495 -5.234664 0.277 8 -1.028247 2.807018 -0.16 8 -1.065299 0.858508 1.848 8 -0.953576 -1.001038 4.076	50408 9874 5370 7369 52559 5219
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50408 9874 5370 7369 52559 8219 5407 25657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50408 9874 5370 7369 52559 3219 5407 25657 70668
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50408 9874 5370 7369 52559 3219 5407 25657 70668 3608
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50408 874 5370 7369 52559 8219 5407 25657 70668 8608 56944
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50408 5370 5370 52559 52559 5407 5657 70668 5608 56944 58398
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50408 874 5370 7369 52559 5407 25657 70668 3608 56944 8398 27988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50408 874 5370 7369 52559 5407 25657 70668 56944 8398 27988 5179
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50408 874 5370 7369 52559 5407 25657 70668 56944 8398 27988 5179 2127

6	6.048549	-3.945508	-1.789340
6	1 555763	-2 573702	-3 111/25
0	1.333703	2.373702	J.III42J
6	9.925533	0.221119	-1.696944
6	9.676188	1.978533	-0.055793
6	7 662920	-2 012502	3 3/0305
0	7.002920	-2.012392	5.540595
6	5.303712	-1.683133	3.774746
6	5.159835	-3.807955	-2.860255
c	10 455010	1 215020	1 010220
0	10.455612	1.313030	-1.010230
6	6.551761	-2.160477	4.184203
6	-5 727333	1 614548	1 225657
C C	7 040010	0 420200	17000
6	-/.842819	-0.439366	0.4/0635
6	-6.269641	0.926178	-1.688616
6	-6 328287	2 851275	0 966944
c	4 020207	1 474120	2 200400
0	-4.039/0/	1.4/4130	2.290400
6	-8.624192	0.217017	1.427938
6	-8.375198	-1.546652	-0.205210
c	7 500100	1 205425	0.100141
0	-7.523139	1.395435	-2.102141
6	-5.158597	1.063027	-2.531748
6	-6.048590	3.945489	1.789348
c	4 5550000	0 57000	2 111440
0	-4.555609	2.3/3000	3.111442
6	-9.925556	-0.221148	1.696878
6	-9.676171	-1.978574	0.055745
6	7 662004	2 012506	2 240406
0	-7.002904	2.012596	-3.340400
6	-5.303693	1.683143	-3.774746
6	-5.159886	3.807936	2.860272
G	10 / 55015	1 215676	1 010165
0	-10.455615	-1.313676	T.010103
6	-6.551740	2.160486	-4.184208
1	6.988218	-2.973758	-0.108419
1	1 225020	0 520401	2 160720
1	4.323039	-0.529401	-2.409/30
1	8.216583	-1.072722	-1.964599
1	7.766559	2.074053	0.941636
1	0 202051	1 074050	1 157026
T	0.393931	-1.2/4950	1.43/030
1	4.187575	-0.682021	2.227089
1	6.504593	-4.913398	-1.575443
1	2 020010	-2 166911	-2 017104
1	3.029010	-2.400011	-3.91/104
1	10.524502	-0.296751	-2.447646
1	10.079526	2.838873	0.479931
1	0 6/1700	0 077414	2 664007
1	0.041/02	-2.3//414	5.004097
1	4.432049	-1.785722	4.420886
1	4.916448	-4.670942	-3.481220
1	11 /70325	1 656660	_1 221160
1	11.470323	1.030000	-1.221109
1	6.660158	-2.643054	5.156698
1	-6.988235	2.973741	0.108414
1	-1 325863	0 520301	2 169716
1	-4.525005	0.529591	2.409/40
T	-8.216621	1.0/2/09	1.96454/
1	-7.766526	-2.074087	-0.941654
1	-8 393913	1 27/951	-1 157855
1	0.333343	1.2/4991	1.457055
1	-4.187562	0.682026	-2.227087
1	-6.504638	4.913378	1.575452
1	-3 829863	2 166796	3 917127
1	-5.029005	2.400790	5.91/12/
1	-10.524542	0.296723	2.447566
1	-10.079494	-2.838922	-0.479978
1	-8 6/1685	2 377/17	-3 66/012
- -	0.041000	2.0//41/	J. UUHUIZ
\bot	-4.432027	1.785736	-4.420881
1	-4.916511	4.670922	3.481244
1	-11 /70220	-1 656707	1 221001
- -	TT.410323	1.000/0/	⊥ .∠∠⊥∪ÿ⊥
\bot	-6.660133	2.643067	-5.156701
1	3.960704	1.458672	2.332495
1	7 72/751	-0 171162	3 102760
1	1.1241JI	1 101001	J. 192/00
\perp	9.015506	-1.121926	0.985683
1	5.137672	-2.152057	-0.605497
1	8 863429	0 837840	-1 356220
⊥ ₁	0.003429	0.03/040	· 1. JJUZZU
\perp	/.91/858	2.34/664	2.569062

1	3.363611	1.363043	4.722152
1	7.127893	-0.559692	5.593972
1	9.757390	-3.465384	0.689795
1	5.877638	-4.483887	-0.905026
1	11.068736	1.967388	-1.255476
1	10.103945	3.503765	2.657051
1	4.943416	0.356389	6.372057
1	8.194739	-5.161132	-0.260678
1	11.699797	3.311434	0.749245
1	6.113911	-1.187579	-3.460785
1	4.419853	2.424483	-3.810185
1	5.577108	2.432807	-5.179730
1	6.188914	2.401103	-3.493741
1	4.413267	-1.144015	-4.785461
1	4.407178	0.198107	-5.973664
1	3.346525	0.250039	-4.530111

$(3) \, [Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2{}^{2-}$

51	-6.316264	-0.528448	-0.494393
51	6.316264	0.528448	0.494393
47	-4.129772	-1.045257	0.983816
47	4.129772	1.045257	-0.983816
42	-0.924558	-1.346877	-0.736608
42	-2.164766	1.653318	-1.066395
42	-0.915057	-1.146950	2.511660
42	-2.213322	1.953331	2.264077
42	0.924558	1.346877	0.736608
42	2.164766	-1.653318	1.066395
42	0.915057	1.146950	-2.511660
42	2.213322	-1.953331	-2.264077
8	0.023640	-2.344894	-1.848306
8	-1.175794	0.166678	-1.965250
8	-0.163000	-2.082943	0.928974
8	-1.199712	0.233415	0.610388
8	-2.509022	-2.042099	-0.719213
8	-2.250454	2.737868	0.514870
8	-3.716416	0.886911	-0.957539
8	-2.320395	2.821977	-2.301934
8	-1.322135	0.556616	3.266863
8	-2.532628	-1.828477	2.451623
8	-0.163407	-1.926811	3.832146
8	-3.765130	1.156181	2.163424
8	-2.445363	3.236888	3.376279
8	-7.191799	-0.397606	2.748757
8	-0.023640	2.344894	1.848306
8	1.175794	-0.166678	1.965250
8	0.163000	2.082943	-0.928974
8	1.199712	-0.233415	-0.610388
8	2.509022	2.042099	0.719213
8	2.250454	-2.737868	-0.514870
8	3.716416	-0.886911	0.957539
8	2.320395	-2.821977	2.301934
8	1.322135	-0.556616	-3.266863
8	2.532628	1.828477	-2.451623
8	0.163407	1.926811	-3.832146
8	3.765130	-1.156181	-2.163424
8	2.445363	-3.236888	-3.376279
8	7.191799	0.397606	-2.748757
7	-5.390324	-0.599757	4.158646
7	5.390324	0.599757	-4.158646
6	-5.896029	-0.522762	-2.598810

6	-7.018357	1.479320	-0.229367
6	-8 240984	-1 502479	-0 604095
C	4 (71707	1 020000	0.004000
0	-4.6/1/8/	-1.039964	-3.042683
6	-6.776729	0.049521	-3.525242
6	-8.318908	1.858290	-0.584004
6	-6 1/6187	2 132901	0 312858
0	0.130450	2.432304	0.312030
6	-9.139458	-1.408581	0.4/0906
6	-8.600931	-2.265778	-1.723746
6	-4.332645	-0.984147	-4.397249
6	-6 440563	0 100966	_1 000020
0	-0.440363	0.100966	-4.000020
6	-8.741832	3.179625	-0.409244
6	-6.569980	3.752640	0.486758
6	-10 378710	-2 052601	0 414182
c	10.000000	2.002001 2.01E100	1 777017
0	-9.030990	-2.915100	-1.///01/
6	-5.216046	-0.414789	-5.317311
6	-7.866448	4.129239	0.125312
6	-10 732678	-2 807283	-0 708644
c	£ 070CC4	0.007CE1	2 421400
0	-0.2/9004	0.097651	3.421499
6	-5.393409	-2.054853	4.160543
6	-4.329082	0.059170	4.904710
6	5 896029	0 522762	2 598810
c	7 010257	1 470220	0.000010
0	1.018357	-1.4/9320	0.229367
6	8.240984	1.502479	0.604095
6	4.671787	1.039964	3.042683
6	6 776729	-0 049521	3 525242
c	0.210000	1 050000	0 604004
0	8.318908	-1.858290	0.584004
6	6.146187	-2.432904	-0.312858
6	9.139458	1.408581	-0.470906
6	8 600931	2 265778	1 723746
G	A 222645	0 00/1/7	1 207240
0	4.552045	0.904147	4.397249
6	6.440563	-0.100966	4.880828
6	8.741832	-3.179625	0.409244
6	6.569980	-3.752640	-0.486758
6	10 378710	2 052601	-0 414182
C	0.020000	2.002001	1 777017
0	9.838996	2.915108	1.///01/
6	5.216046	0.414789	5.317311
6	7.866448	-4.129239	-0.125312
6	10 732678	2 807283	0 708644
G	6 270664	0 007651	2 421400
0	0.2/9004	-0.097651	-3.421499
6	5.393409	2.054853	-4.160543
6	4.329082	-0.059170	-4.904710
1	-3 960704	-1 458672	-2 332495
1	7 704751	0 474462	2 102760
1	-7.724751	0.4/4405	-3.192/60
1	-9.015506	1.121926	-0.985683
1	-5.137672	2.152057	0.605497
1	-8.863429	-0.837840	1.356220
1	_7 017050	-2 247664	-2 560062
1	-7.917030	-2.34/004	-2.309002
1	-3.363611	-1.363043	-4.722152
1	-7.127893	0.559692	-5.593972
1	-9.757390	3.465384	-0.689795
1	-5 877638	4 483887	0 905026
1	11 000700	1 0 0 7 2 0 0	1 255476
T	-11.068/36	-1.96/388	1.2554/6
1	-10.103945	-3.503765	-2.657051
1	-4.943416	-0.356389	-6.372057
1	-8.194739	5.161132	0.260678
- 1	-11 600707	_2 211/2/	
1	-11.099/9/	-3.311434	-0./49245
\perp	-6.113911	1.187579	3.460785
1	-4.419853	-2.424483	3.810185
1	-5.577108	-2.432807	5.179730
1	-6 188914	-2 401103	3 493741
÷ 1			A 70EAC1
1	-4.41326/	1.144015	4./03401
1	-4.407178	-0.198107	5.973664
1	-3.346525	-0.250039	4.530111

1	3.960704	1.458672	2.332495
1	7.724751	-0.474463	3.192760
1	9.015506	-1.121926	0.985683
1	5.137672	-2.152057	-0.605497
1	8.863429	0.837840	-1.356220
1	7.917858	2.347664	2.569062
1	3.363611	1.363043	4.722152
1	7.127893	-0.559692	5.593972
1	9.757390	-3.465384	0.689795
1	5.877638	-4.483887	-0.905026
1	11.068736	1.967388	-1.255476
1	10.103945	3.503765	2.657051
1	4.943416	0.356389	6.372057
1	8.194739	-5.161132	-0.260678
1	11.699797	3.311434	0.749245
1	6.113911	-1.187579	-3.460785
1	4.419853	2.424483	-3.810185
1	5.577108	2.432807	-5.179730
1	6.188914	2.401103	-3.493741
1	4.413267	-1.144015	-4.785461
1	4.407178	0.198107	-5.973664
1	3.346525	0.250039	-4.530111

For the sake of clarity, only the non-trivial CPs are shown for one sub-unit.

Fig. S5. Critical Points (CPs) of $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^{2-}$ (a), $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$ (b), and $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$ (c). Legend of colors: Yellow (BCP), Wine (RCP), and Violet (CCP).

Part D. Natural Bond Orbital Analysis

			doı	ıor				ť	acce	ptor			<i>E</i> ⁽²⁾ / (kcal/mol)
242	LP	(1)	Р	\rightarrow	248	LP*	(6)	Ag	213.91
248	LP*	(6)	Ag	\rightarrow	369	RY*	(11)	С	213.94
248	LP*	(6)	Ag	\rightarrow	371	RY*	(13)	С	172.06
248	LP*	(6)	Ag	\rightarrow	401	RY*	(1)	Р	619.04
248	LP*	(6)	Ag	\rightarrow	406	RY*	(6)	Р	1465.28
248	LP*	(6)	Ag	\rightarrow	416	RY*	(16)	Р	535.86
248	LP*	(6)	Ag	\rightarrow	417	RY*	(17)	Р	403.51
248	LP*	(6)	Ag	\rightarrow	481	RY*	(2)	Ag	739.19
248	LP*	(6)	Ag	\rightarrow	483	RY*	(4)	Ag	454.00
248	LP*	(6)	Ag	\rightarrow	564	RY*	(2)	0	659.28
248	LP*	(6)	Ag	\rightarrow	567	RY*	(5)	0	556.53
248	LP*	(6)	Ag	\rightarrow	577	RY*	(1)	0	1149.09
248	LP*	(6)	Ag	\rightarrow	606	RY*	(2)	0	245.52
248	LP*	(6)	Ag	\rightarrow	607	RY*	(3)	0	130.23
248	LP*	(6)	Ag	\rightarrow	608	RY*	(4)	0	156.18
248	LP*	(6)	Ag	\rightarrow	609	RY*	(5)	0	116.79
248	LP*	(6)	Ag	\rightarrow	788	RY*	(5)	0	139.72
248	LP*	(6)	Ag	\rightarrow	798	RY*	(1)	0	166.91

Table S2. Natural Bond Orbital (NBO) analysis for $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^2$. Values of delocalization energy $E^{(2)}$ shown above 100.00 kcal/mol.

			orbi	tal		occup.	%s	%p	%d
242	LP	(1)	Р	1.80480	42.77	57.20	0.03
248	LP*	(6)	Ag	0.19046	92.48	6.37	1.15
369	RY*	(11)	С	0.00016	12.42	4.83	82.75
371	RY*	(13)	С	0.00008	84.28	2.44	13.28
401	RY*	(1)	Р	0.00678	0.89	82.53	16.58
406	RY*	(6)	Р	0.00176	14.65	59.97	25.38
416	RY*	(16)	Р	0.00019	43.51	47.66	8.83
417	RY*	(17)	Р	0.00014	57.00	36.04	6.96
481	RY*	(2)	Ag	0.00106	83.98	14.35	1.66
483	RY*	(4)	Ag	0.00037	7.55	63.68	28.77
564	RY*	(2)	0	0.00150	4.84	94.79	0.37
567	RY*	(5)	0	0.00030	58.70	37.41	3.90
577	RY*	(1)	0	0.00238	8.15	91.49	0.36
606	RY*	(2)	0	0.00246	4.46	95.38	0.16
607	RY*	(3)	0	0.00198	8.90	90.97	0.13
608	RY*	(4)	0	0.00104	86.48	13.11	0.41
609	RY*	(5)	0	0.00044	68.62	29.81	1.57
788	RY*	(5)	0	0.00090	74.95	23.75	1.31
798	RY*	(1)	0	0.00645	9.51	90.21	0.28

Table S3. Natural Bond Orbital (NBO) analysis for $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^{2-}$. Nature, occupancy and composition of the NBOs.

			do	nor					acce	eptor			$E^{(2)}$ / (kcal/mol)
266	LP*	(6)	Ag	\rightarrow	377	RY*	(1)	Ag	2557.98
266	LP*	(6)	Ag	\rightarrow	380	RY*	(4)	Ag	403.96
266	LP*	(6)	Ag	\rightarrow	381	RY*	(5)	Ag	526.95
266	LP*	(6)	Ag	\rightarrow	382	RY*	(6)	Ag	2612.62
266	LP*	(6)	Ag	\rightarrow	389	RY*	(2)	0	221.25
266	LP*	(6)	Ag	\rightarrow	391	RY*	(4)	0	2373.95
266	LP*	(6)	Ag	\rightarrow	392	RY*	(5)	0	405.09
266	LP*	(6)	Ag	\rightarrow	393	RY*	(6)	0	162.96
266	LP*	(6)	Ag	\rightarrow	402	RY*	(1)	0	1391.05
266	LP*	(6)	Ag	\rightarrow	494	RY*	(7)	Mo	102.33
266	LP*	(6)	Ag	\rightarrow	418	RY*	(3)	0	163.44
266	LP*	(6)	Ag	\rightarrow	431	RY*	(2)	0	542.42
266	LP*	(6)	Ag	\rightarrow	432	RY*	(3)	0	175.65
266	LP*	(6)	Ag	\rightarrow	433	RY*	(4)	0	1134.55
266	LP*	(6)	Ag	\rightarrow	434	RY*	(5)	0	161.24
266	LP*	(6)	Ag	\rightarrow	435	RY*	(6)	0	2503.06
266	LP*	(6)	Ag	\rightarrow	674	RY*	(14)	0	111.48
266	LP*	(6)	Ag	\rightarrow	444	RY*	(1)	As	1202.96
266	LP*	(6)	Ag	\rightarrow	448	RY*	(5)	As	238.33
266	LP*	(6)	Ag	\rightarrow	605	RY*	(1)	0	190.45
266	LP*	(6)	Ag	\rightarrow	611	RY*	(7)	0	511.18
279	LP*	(1)	Mo	\rightarrow	268	LP*	(8)	Ag	106.61
282	LP*	(1)	Mo	\rightarrow	377	RY*	(1)	Ag	976.20
278	LP	(1)	As	\rightarrow	266	LP*	(6)	Ag	223.87

Table S4. Natural Bond Orbital (NBO) analysis for $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^2$. Values of delocalization energy $E^{(2)}$ shown above 100.00 kcal/mol.

_				orbi	tal		occup.	%s	%р	%d
	266	LP*	(6)	Ag	0.19751	89.87	9.20	0.93
	268	LP*	(8)	Ag	0.04048	0.00	99.83	0.16
	278	LP	(1)	As	1.80717	51.36	48.57	0.07
	279	LP*	(1)	Мо	0.59031	8.20	3.29	88.51
	282	LP*	(1)	Мо	0.30068	73.50	3.67	22.83
	377	RY*	(1)	Ag	0.00134	37.99	61.22	0.79
	380	RY*	(4)	Ag	0.00036	8.29	69.77	21.94
	381	RY*	(5)	Ag	0.00024	57.58	4.61	37.81
	382	RY*	(6)	Ag	0.00019	10.68	14.09	75.23
	389	RY*	(2)	0	0.00156	16.02	83.46	0.53
	391	RY*	(4)	0	0.00070	64.78	34.57	0.65
	392	RY*	(5)	0	0.00029	51.31	45.54	3.15
	393	RY*	(6)	0	0.00029	32.36	50.73	16.90
	402	RY*	(1)	0	0.00242	4.83	94.84	0.33
	418	RY*	(3)	0	0.00204	2.09	97.77	0.14
	431	RY*	(2)	0	0.00165	4.87	94.65	0.48
	432	RY*	(3)	0	0.00132	27.31	72.44	0.26
	433	RY*	(4)	0	0.00071	63.51	35.45	1.04
	434	RY*	(5)	0	0.00027	40.79	37.13	22.09
	435	RY*	(6)	0	0.00228	7.51	92.45	0.04
	444	RY*	(1)	As	0.00203	6.41	72.55	21.04
	448	RY*	(5)	As	0.00193	62.45	18.35	19.19
	494	RY*	(7)	Мо	0.00054	60.47	36.92	2.61
	605	RY*	(1)	0	0.00641	8.81	90.95	0.24
	611	RY*	(7)	0	0.00063	31.32	68.16	0.52
	674	RY*	(14)	0	0.00004	7.07	3.45	89.48

Table S5. Natural Bond Orbital (NBO) analysis for $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$. Nature, occupancy and composition of the NBOs.

			<u> </u>										
			do	nor					acce	eptor			$E^{(2)}$ / (kcal/mol)
277	LP*	(5)	Мо	\rightarrow	316	LP*	(7)	Ag	606.00
279	LP*	(1)	Мо	\rightarrow	318	LP*	(9)	Ag	136.79
315	LP*	(6)	Ag	\rightarrow	441	RY*	(9)	Mo	302.51
315	LP*	(6)	Ag	\rightarrow	480	RY*	(1)	0	1062.50
315	LP*	(6)	Ag	\rightarrow	483	RY*	(4)	0	998.49
315	LP*	(6)	Ag	\rightarrow	484	RY*	(5)	0	116.98
315	LP*	(6)	Ag	\rightarrow	485	RY*	(6)	0	471.61
315	LP*	(6)	Ag	\rightarrow	487	RY*	(8)	0	644.23
315	LP*	(6)	Ag	\rightarrow	405	RY*	(1)	0	213.92
315	LP*	(6)	Ag	\rightarrow	550	RY*	(1)	0	349.42
315	LP*	(6)	Ag	\rightarrow	554	RY*	(5)	0	118.68
315	LP*	(6)	Ag	\rightarrow	602	RY*	(3)	0	360.09
315	LP*	(6)	Ag	\rightarrow	589	RY*	(1)	Ag	801.35
315	LP*	(6)	Ag	\rightarrow	592	RY*	(4)	Ag	217.42
315	LP*	(6)	Ag	\rightarrow	593	RY*	(5)	Ag	220.84
315	LP*	(6)	Ag	\rightarrow	595	RY*	(7)	Ag	5280.31
315	LP*	(6)	Ag	\rightarrow	597	RY*	(9)	Ag	438.63
315	LP*	(6)	Ag	\rightarrow	598	RY*	(10)	Ag	298.62
315	LP*	(6)	Ag	\rightarrow	628	RY*	(1)	Sb	398.56
323	LP	(1)	Sb	\rightarrow	315	LP*	(6)	Ag	176.36

Table S6. Natural Bond Orbital (NBO) analysis for $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^2$. Values of delocalization energy $E^{(2)}$ shown above 100.00 kcal/mol.

			orbi	tal		occup.	%s	%p	%d
277	LP*	(5)	Mo	0.17971	13.56	85.51	0.94
279	LP*	(1)	Mo	0.46414	0.99	32.86	66.15
315	LP*	(6)	Ag	0.22217	87.97	11.42	0.61
316	LP*	(7)	Ag	0.08999	9.23	90.74	0.03
318	LP*	(9)	Ag	0.04506	1.72	98.13	0.15
323	LP	(1)	Sb	1.78983	56.84	43.16	0.00
405	RY*	(1)	0	0.00468	12.65	86.88	0.47
441	RY*	(9)	Mo	0.00093	79.38	20.16	0.46
480	RY*	(1)	0	0.00201	3.65	96.11	0.23
483	RY*	(4)	0	0.00075	67.52	31.94	0.55
484	RY*	(5)	0	0.00026	42.21	57.60	0.19
485	RY*	(6)	0	0.00020	12.42	80.35	7.23
487	RY*	(8)	0	0.00012	3.11	91.06	5.83
550	RY*	(1)	0	0.00321	10.41	89.33	0.26
554	RY*	(5)	0	0.00048	27.12	69.14	3.74
589	RY*	(1)	Ag	0.00173	56.23	43.48	0.29
592	RY*	(4)	Ag	0.00053	63.65	29.81	6.54
593	RY*	(5)	Ag	0.00043	32.97	65.69	1.34
595	RY*	(7)	Ag	0.00024	6.02	1.12	92.86
597	RY*	(9)	Ag	0.00017	29.36	2.68	67.96
598	RY*	(10)	Ag	0.00015	55.59	4.20	40.21
602	RY*	(3)	0	0.00221	46.08	53.72	0.20
628	RY*	(1)	Sb	0.00286	0.34	99.66	0.00

Table S7. Natural Bond Orbital (NBO) analysis for $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^2$. Nature, occupancy and composition of the NBOs.

	_		X	
		Р	As	Sb
Ag	(1)	0.706	0.692	0.622
Х		0.922	1.031	1.516
Mo	(2)	2.013	2.014	2.055
Mo	(3)	2.077	2.080	2.021
Mo	(4)	2.066	2.018	2.032
Mo	(5)	2.030	2.024	2.023
0	(6)	-1.064	-1.063	-1.060
0	(7)	-0.726	-0.718	-0.771
0	(8)	-0.779	-0.782	-0.777
0	(9)	-0.736	-0.732	-0.652
0	(10)	-0.653	-0.656	-0.856
0	(11)	-0.590	-0.584	-0.634
0	(12)	-0.627	-0.628	-0.565
0	(13)	-0.599	-0.582	-0.695
0	(14)	-0.706	-0.700	-0.567
0	(15)	-0.855	-0.857	-0.861
0	(16)	-0.865	-0.856	-0.892
0	(17)	-0.912	-0.899	-0.896
0	(18)	-0.898	-0.902	-0.718

Table S8. Natural Atomic Charges (NAC), in units of elementary charge.

Part E. IR data.

Fig. S6. Computed infrared spectra of $[Ag\{MO_4O_{13}\}\{PPh_2Py\}]_2^{2-}$ (a), $[Ag\{MO_4O_{13}\}\{AsPh_3\}]_2^{2-}$ (b), and $[Ag\{MO_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$ (c) in the near and far region. Harmonic approximation is assumed. No scale factor is applied.

Fig. S7. Experimental IR spectra (200 - 600 cm⁻¹) for 2-4.

Fig. S8. Comparison between experimental and computed infrared wavenumbers (in cm⁻). Computed values are reported in *Italics*. Displacement vectors are depicted on the molecular structure.

(1) $[Ag\{Mo_4O_{13}\}\{PPh_2Py\}]_2^{2-}$

S34

(3) $[Ag\{Mo_4O_{13}\}\{AsPh_3\}]_2^{2-}$

(4) $[Ag\{Mo_4O_{13}\}\{SbPh_3\}(DMF)]_2^{2-}$

Part F. Non-valence contacts.

Fig. S9. Contour line diagram of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$, bond paths and selected zero-flux surfaces (left) and RDG isosurface (right) referring to halogen bonding Cl···O in supramolecular structure of Cl. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown. Length units – Å, RDG isosurface values are given in a.u.

Fig. S10. Contour line diagram of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$, bond paths and selected zero-flux surfaces (left) and RDG isosurface (right) referring to halogen bonding Br···O in supramolecular structure of Br. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown. Length units – Å, RDG isosurface values are given in a.u.

Tuble 651 Gui teoluli u		louer supramolecular a	550010105.
Atom	X	Y	Z
Cl			
С	2.910691	6.368480	1.503831
Н	3.407103	6.417109	2.312626
С	3.426245	5.631199	0.454114
Н	4.250734	5.168783	0.549532
С	2.727491	5.571210	-0.735746
Н	3.048648	5.064828	-1.472542
С	1.557109	6.269789	-0.812554
С	1.093747	6.983848	0.289717
Н	0.277896	7.466293	0.219161
С	-2.290675	7.581800	2.991493
Н	-2.541727	6.672952	3.100898
С	-2.517302	9.878788	3.743408
Н	-3.073672	10.367134	4.385757
Н	-1.573891	9.974383	3.988967
Н	-2.660381	10.241777	2.844802
С	-3.749607	8.046229	4.845679
Н	-4.100278	8.836106	5.307326
Н	-4.493527	7.521076	4.484450
Н	-3.238664	7.498280	5.477356
0	3.791812	8.700880	3.662557
0	2.293243	6.499294	5.018162
N	1.758333	7.008618	1.429718
N	-2.883683	8.466150	3.760926
0	1.229650	10.341862	3.725891
0	-0.319712	8.074288	5.186602
0	-1.486667	8.570259	7.579796
0	0.079935	10.569819	6.256532
0	1.011208	7.214901	7.392491
0	1.248844	12.755150	4.919793
0	2.364994	9.173243	6.160588
0	3.559309	11.169900	5.021396
0	5.943091	9.755714	4.973694
0	4.516239	7.714743	6.194007
0	3.192544	5.497869	7.369583
0	-1.422390	7.835301	2.125038
Мо	-0.017026	8.704944	6.757270
Мо	1.559210	11.112814	5.218268
Мо	4.248223	9.350113	5.157226
Мо	2.714309	6.949790	6.617802
Ag	0.962468	8.013912	3.247521
Cl	0.635700	6.326294	-2.283237
С	4.076970	12.982720	11.971361
Н	3.580559	12.934091	11.162566

Table S9. Cartesian atomic coordinates for model supramolecular associates.

С	3.561417	13.720001	13.021078
Н	2.736927	14.182417	12.925661
С	4.260171	13.779990	14.210938
Н	3.939014	14.286372	14.947734
С	5.430552	13.081411	14.287746
С	5.893915	12.367352	13.185476
Н	6.709766	11.884907	13.256032
С	9.278337	11.769400	10.483700
Н	9.529388	12.678248	10.374295
С	9.504964	9.472412	9.731784
Н	10.061333	8.984066	9.089435
Н	8.561552	9.376817	9.486226
Н	9.648043	9.109423	10.630391
С	10.737268	11.304971	8.629513
Н	11.087940	10.515094	8.167867
Н	11.481189	11.830124	8.990743
Н	10.226325	11.852920	7.997837
0	3.195849	10.650320	9.812635
0	4.694418	12.851906	8.457031
N	5.229328	12.342582	12.045474
N	9.871345	10.885050	9.714266
0	5.758011	9.009338	9.749302
0	7.307373	11.276912	8.288591
0	8.474329	10.780941	5.895397
0	6.907727	8.781381	7.218661
0	5.976453	12.136299	6.082702
0	5.738817	6.596050	8.555400
0	4.622668	10.177957	7.314604
0	3.428352	8.181300	8.453797
0	1.044570	9.595486	8.501499
0	2.471422	11.636457	7.281185
0	3.795117	13.853331	6.105610
0	8.410052	11.515899	11.350155
Мо	7.004688	10.646256	6.717922
Мо	5.428451	8.238386	8.256924
Мо	2.739438	10.001087	8.317967
Мо	4.273353	12.401410	6.857391
Ag	6.025193	11.337288	10.227671
Cl	6.351961	13.024906	15.758429
С	-4.076970	6.368480	-11.971361
Н	-3.580559	6.417109	-11.162566
С	-3.561417	5.631199	-13.021078
Н	-2.736927	5.168783	-12.925661
С	-4.260171	5.571210	-14.210938
Н	-3.939014	5.064828	-14.947734
С	-5.430552	6.269789	-14.287746

С	-5.893915	6.983848	-13.185476
Н	-6.709766	7.466293	-13.256032
С	-9.278337	7.581800	-10.483700
Н	-9.529388	6.672952	-10.374295
С	-9.504964	9.878788	-9.731784
Н	-10.061333	10.367134	-9.089435
Н	-8.561552	9.974383	-9.486226
Н	-9.648043	10.241777	-10.630391
С	-10.737268	8.046229	-8.629513
Н	-11.087940	8.836106	-8.167867
Н	-11.481189	7.521076	-8.990743
Н	-10.226325	7.498280	-7.997837
0	-3.195849	8.700880	-9.812635
0	-4.694418	6.499294	-8.457031
N	-5.229328	7.008618	-12.045474
N	-9.871345	8.466150	-9.714266
0	-5.758011	10.341862	-9.749302
0	-7.307373	8.074288	-8.288591
0	-8.474329	8.570259	-5.895397
0	-6.907727	10.569819	-7.218661
0	-5.976453	7.214901	-6.082702
0	-5.738817	12.755150	-8.555400
0	-4.622668	9.173243	-7.314604
0	-3.428352	11.169900	-8.453797
0	-1.044570	9.755714	-8.501499
0	-2.471422	7.714743	-7.281185
0	-3.795117	5.497869	-6.105610
0	-8.410052	7.835301	-11.350155
Мо	-7.004688	8.704944	-6.717922
Мо	-5.428451	11.112814	-8.256924
Мо	-2.739438	9.350113	-8.317967
Мо	-4.273353	6.949790	-6.857391
Ag	-6.025193	8.013912	-10.227671
Cl	-6.351961	6.326294	-15.758429
С	-2.910691	12.982720	-1.503831
Н	-3.407103	12.934091	-2.312626
С	-3.426245	13.720001	-0.454114
Н	-4.250734	14.182417	-0.549532
С	-2.727491	13.779990	0.735746
Н	-3.048648	14.286372	1.472542
С	-1.557109	13.081411	0.812554
С	-1.093747	12.367352	-0.289717
Н	-0.277896	11.884907	-0.219161
С	2.290675	11.769400	-2.991493
Н	2.541727	12.678248	-3.100898
С	2.517302	9.472412	-3.743408

Н	3.073672	8.984066	-4.385757
Н	1.573891	9.376817	-3.988967
Н	2.660381	9.109423	-2.844802
С	3.749607	11.304971	-4.845679
Н	4.100278	10.515094	-5.307326
Н	4.493527	11.830124	-4.484450
Н	3.238664	11.852920	-5.477356
0	-3.791812	10.650320	-3.662557
0	-2.293243	12.851906	-5.018162
N	-1.758333	12.342582	-1.429718
N	2.883683	10.885050	-3.760926
0	-1.229650	9.009338	-3.725891
0	0.319712	11.276912	-5.186602
0	1.486667	10.780941	-7.579796
0	-0.079935	8.781381	-6.256532
0	-1.011208	12.136299	-7.392491
0	-1.248844	6.596050	-4.919793
0	-2.364994	10.177957	-6.160588
0	-3.559309	8.181300	-5.021396
0	-5.943091	9.595486	-4.973694
0	-4.516239	11.636457	-6.194007
0	-3.192544	13.853331	-7.369583
0	1.422390	11.515899	-2.125038
Мо	0.017026	10.646256	-6.757270
Мо	-1.559210	8.238386	-5.218268
Мо	-4.248223	10.001087	-5.157226
Мо	-2.714309	12.401410	-6.617802
Ag	-0.962468	11.337288	-3.247521
Cl	-0.635700	13.024906	2.283237
Br			
Br	6.301145	6.352656	15.944555
С	4.026407	6.385179	11.984359
Н	3.539064	6.434835	11.170440
С	3.495465	5.656700	13.034262
Н	2.668862	5.201241	12.928783
С	4.165101	5.596687	14.225237
Н	3.826709	5.090894	14.955720
С	5.830033	6.981436	13.226880
Н	6.654069	7.447098	13.303927
С	9.246754	7.580984	10.566854
Н	9.496745	6.671673	10.446807
С	10.701629	8.051408	8.700360
Н	11.049839	8.848805	8.248318
Н	11.449584	7.521243	9.047601
Н	10.188524	7.512899	8.062347
С	9.473453	9.869218	9.804521

Н	10.037711	10.349476	9.162927
Н	8.532398	9.966691	9.548394
Н	9.607704	10.243795	10.700791
С	5.346218	6.293030	14.328328
N	5.184002	7.013766	12.073885
N	9.833223	8.457366	9.808591
0	8.448973	8.570229	5.953520
0	6.878600	10.568659	7.270104
0	5.724399	12.755064	8.607578
0	5.719951	10.335577	9.796111
0	5.952440	7.217616	6.141255
0	7.283120	8.072897	8.349035
0	4.593586	9.175004	7.359088
0	3.401691	11.174208	8.492549
0	1.018031	9.763905	8.528089
0	2.446384	7.724047	7.320293
0	3.164216	8.705549	9.852404
0	3.778349	5.506087	6.155633
0	4.661364	6.505398	8.505843
0	8.387216	7.819100	11.436347
Мо	5.399749	11.115357	8.306307
Мо	6.981148	8.705549	6.776758
Мо	4.250347	6.954914	6.909149
Мо	2.715839	9.356205	8.357446
Ag	6.013790	8.016755	10.279012
Br	0.649335	13.006344	-2.379916
С	2.924073	12.973821	1.580280
Н	3.411416	12.924165	2.394200
С	3.455015	13.702300	0.530377
Н	4.281618	14.157759	0.635856
С	2.785379	13.762313	-0.660598
Н	3.123771	14.268106	-1.391081
С	1.120447	12.377564	0.337760
Н	0.296410	11.911902	0.260712
С	-2.296274	11.778016	2.997785
Н	-2.546266	12.687327	3.117832
С	-3.751149	11.307592	4.864280
Н	-4.099360	10.510195	5.316321
Н	-4.499105	11.837757	4.517038
Н	-3.238044	11.846101	5.502292
С	-2.522973	9.489782	3.760118
Н	-3.087232	9.009524	4.401712
Н	-1.581918	9.392309	4.016246
Н	-2.657224	9.115205	2.863848
С	1.604262	13.065970	-0.763689
N	1.766478	12.345234	1.490754

Ν	-2.882743	10.901634	3.756049
0	-1.498493	10.788771	7.611119
0	0.071880	8.790341	6.294535
0	1.226081	6.603936	4.957062
0	1.230529	9.023423	3.768528
0	0.998039	12.141384	7.423384
0	-0.332640	11.286103	5.215604
0	2.356894	10.183996	6.205551
0	3.548789	8.184792	5.072090
0	5.932449	9.595095	5.036551
0	4.504095	11.634953	6.244346
0	3.786263	10.653451	3.712235
0	3.172131	13.852913	7.409006
0	2.289116	12.853602	5.058797
0	-1.436736	11.539900	2.128292
Мо	1.550731	8.243643	5.258332
Мо	-0.030668	10.653451	6.787881
Мо	2.700132	12.404086	6.655490
Мо	4.234641	10.002795	5.207194
Ag	0.936690	11.342245	3.285627
Br	-0.649335	6.352656	2.379916
С	-2.924073	6.385179	-1.580280
Н	-3.411416	6.434835	-2.394200
С	-3.455015	5.656700	-0.530377
Н	-4.281618	5.201241	-0.635856
С	-2.785379	5.596687	0.660598
Н	-3.123771	5.090894	1.391081
С	-1.120447	6.981436	-0.337760
Н	-0.296410	7.447098	-0.260712
С	2.296274	7.580984	-2.997785
Н	2.546266	6.671673	-3.117832
С	3.751149	8.051408	-4.864280
Н	4.099360	8.848805	-5.316321
Н	4.499105	7.521243	-4.517038
Н	3.238044	7.512899	-5.502292
С	2.522973	9.869218	-3.760118
Н	3.087232	10.349476	-4.401712
Н	1.581918	9.966691	-4.016246
Н	2.657224	10.243795	-2.863848
С	-1.604262	6.293030	0.763689
Ν	-1.766478	7.013766	-1.490754
Ν	2.882743	8.457366	-3.756049
0	1.498493	8.570229	-7.611119
0	-0.071880	10.568659	-6.294535
0	-1.226081	12.755064	-4.957062
0	-1.230529	10.335577	-3.768528

0	-0.998039	7.217616	-7.423384
0	0.332640	8.072897	-5.215604
0	-2.356894	9.175004	-6.205551
0	-3.548789	11.174208	-5.072090
0	-5.932449	9.763905	-5.036551
0	-4.504095	7.724047	-6.244346
0	-3.786263	8.705549	-3.712235
0	-3.172131	5.506087	-7.409006
0	-2.289116	6.505398	-5.058797
0	1.436736	7.819100	-2.128292
Мо	-1.550731	11.115357	-5.258332
Мо	0.030668	8.705549	-6.787881
Мо	-2.700132	6.954914	-6.655490
Мо	-4.234641	9.356205	-5.207194
Ag	-0.936690	8.016755	-3.285627
Br	-6.301145	13.006344	-15.944555
С	-4.026407	12.973821	-11.984359
Н	-3.539064	12.924165	-11.170440
С	-3.495465	13.702300	-13.034262
Н	-2.668862	14.157759	-12.928783
С	-4.165101	13.762313	-14.225237
Н	-3.826709	14.268106	-14.955720
С	-5.830033	12.377564	-13.226880
Н	-6.654069	11.911902	-13.303927
С	-9.246754	11.778016	-10.566854
Н	-9.496745	12.687327	-10.446807
С	-10.701629	11.307592	-8.700360
Н	-11.049839	10.510195	-8.248318
Н	-11.449584	11.837757	-9.047601
Н	-10.188524	11.846101	-8.062347
С	-9.473453	9.489782	-9.804521
Н	-10.037711	9.009524	-9.162927
Н	-8.532398	9.392309	-9.548394
Н	-9.607704	9.115205	-10.700791
С	-5.346218	13.065970	-14.328328
Ν	-5.184002	12.345234	-12.073885
N	-9.833223	10.901634	-9.808591
0	-8.448973	10.788771	-5.953520
0	-6.878600	8.790341	-7.270104
0	-5.724399	6.603936	-8.607578
0	-5.719951	9.023423	-9.796111
0	-5.952440	12.141384	-6.141255
0	-7.283120	11.286103	-8.349035
0	-4.593586	10.183996	-7.359088
0	-3.401691	8.184792	-8.492549
0	-1.018031	9.595095	-8.528089

0	-2.446384	11.634953	-7.320293
0	-3.164216	10.653451	-9.852404
0	-3.778349	13.852913	-6.155633
0	-4.661364	12.853602	-8.505843
0	-8.387216	11.539900	-11.436347
Мо	-5.399749	8.243643	-8.306307
Мо	-6.981148	10.653451	-6.776758
Мо	-4.250347	12.404086	-6.909149
Мо	-2.715839	10.002795	-8.357446
Ag	-6.013790	11.342245	-10.279012
Ι	1		
С	4.046084	13.011864	12.040249
Н	3.582659	12.950343	11.213378
С	3.476074	13.752456	13.062521
Н	2.647064	14.196850	12.933616
С	4.132926	13.830208	14.267785
Н	3.774130	14.347437	14.979537
С	5.305016	13.151818	14.427386
С	5.833808	12.450103	13.343199
Н	6.666426	12.003299	13.446486
С	9.305651	11.796983	10.744178
Н	9.547354	12.709368	10.644098
С	9.558065	9.532444	9.972315
Н	10.117811	9.056794	9.322312
Н	9.710258	9.162168	10.866287
Н	8.615190	9.427206	9.729776
С	10.768463	11.371288	8.893632
Н	11.125000	10.588361	8.422203
Н	10.258323	11.924672	8.266551
Н	11.509931	11.894251	9.263356
N	5.208927	12.387901	12.162702
N	9.903648	10.933931	9.966811
0	5.768766	6.638889	8.707889
0	6.911161	8.827424	7.395308
0	8.498115	10.826244	6.095110
0	3.428022	8.213764	8.582685
0	1.030978	9.622248	8.610202
0	2.472141	11.667914	7.417322
0	3.174272	10.667629	9.951677
0	3.798866	13.891438	6.268469
0	4.627148	10.228717	7.473733
0	4.669807	12.898734	8.626713
0	5.990171	12.192548	6.276725
0	5.744693	9.049796	9.906273
0	7.330796	11.315696	8.484998
0	8.444197	11.528737	11.606850

Мо	5.426235	8.274994	8.410013
Мо	2.734054	10.032587	8.450876
Мо	4.281006	12.446215	7.025749
Мо	7.022322	10.695815	6.904397
Ag	6.074458	11.363124	10.414107
I	6.327635	13.098364	16.246975
С	2.962994	6.426236	1.718463
Н	3.426419	6.487757	2.545334
С	3.533004	5.685644	0.696191
Н	4.362014	5.241250	0.825096
С	2.876151	5.607892	-0.509072
Н	3.234948	5.090663	-1.220824
С	1.704062	6.286282	-0.668673
С	1.175270	6.987997	0.415513
Н	0.342652	7.434801	0.312226
С	-2.296573	7.641117	3.014534
Н	-2.538276	6.728732	3.114615
С	-2.548987	9.905656	3.786398
Н	-3.108734	10.381306	4.436400
Н	-2.701180	10.275932	2.892425
Н	-1.606112	10.010894	4.028936
С	-3.759385	8.066812	4.865081
Н	-4.115922	8.849739	5.336509
Н	-3.249245	7.513428	5.492162
Н	-4.500853	7.543849	4.495357
N	1.800151	7.050199	1.596011
N	-2.894571	8.504169	3.791901
0	1.240312	12.799211	5.050823
0	0.097916	10.610676	6.363404
0	-1.489037	8.611856	7.663603
0	3.581056	11.224336	5.176028
0	5.978100	9.815852	5.148510
0	4.536937	7.770186	6.341391
0	3.834806	8.770471	3.807036
0	3.210211	5.546662	7.490243
0	2.381930	9.209383	6.284980
0	2.339270	6.539366	5.132000
0	1.018907	7.245552	7.481988
0	1.264384	10.388304	3.852439
0	-0.321719	8.122404	5.273714
0	-1.435119	7.909363	2.151863
Мо	1.582842	11.163106	5.348699
Мо	4.275024	9.405513	5.307836
Мо	2.728072	6.991885	6.732963
Мо	-0.013245	8.742285	6.854315
Ag	0.934619	8.074976	3.344605

Ι	0.681443	6.339736	-2.488263
С	11.055162	13.011864	25.798961
H	10.591736	12.950343	24.972090
С	10.485151	13.752456	26.821234
H	9.656142	14.196850	26.692328
C	11.142004	13.830208	28.026497
H	10.783207	14.347437	28.738249
С	12.314094	13.151818	28.186098
С	12.842886	12.450103	27.101912
Н	13.675504	12.003299	27.205198
С	16.314729	11.796983	24.502891
Н	16.556432	12.709368	24.402810
С	16.567142	9.532444	23.731027
Н	17.126889	9.056794	23.081024
Н	16.719336	9.162168	24.624999
Н	15.624267	9.427206	23.488488
С	17.777540	11.371289	22.652344
Н	18.134078	10.588361	22.180915
Н	17.267401	11.924672	22.025263
Н	18.519009	11.894251	23.022068
N	12.218004	12.387901	25.921414
N	16.912726	10.933931	23.725524
0	12.777843	6.638889	22.466601
0	13.920239	8.827424	21.154020
0	15.507193	10.826244	19.853822
0	10.437100	8.213764	22.341397
0	8.040055	9.622248	22.368915
0	9.481218	11.667914	21.176034
0	10.183350	10.667629	23.710389
0	10.807944	13.891438	20.027182
0	11.636225	10.228717	21.232445
0	11.678885	12.898734	22.385425
0	12.999249	12.192548	20.035437
0	12.753771	9.049796	23.664985
0	14.339874	11.315696	22.243710
0	15.453275	11.528737	25.365562
Мо	12.435313	8.274994	22.168725
Мо	9.743132	10.032587	22.209589
Мо	11.290083	12.446215	20.784461
Мо	14.031400	10.695815	20.663109
Ag	13.083536	11.363124	24.172819
Ι	13.336713	13.098364	30.005688
С	9.972071	6.426236	15.477176
Н	10.435496	6.487757	16.304047
С	10.542081	5.685644	14.454903
Н	11.371091	5.241250	14.583809

С	9.885229	5.607892	13.249640
Н	10.244026	5.090663	12.537888
С	8.713139	6.286282	13.090039
С	8.184347	6.987997	14.174225
Н	7.351729	7.434801	14.070939
С	4.712504	7.641117	16.773246
Н	4.470801	6.728732	16.873327
С	4.460091	9.905656	17.545110
Н	3.900344	10.381306	18.195113
Н	4.307897	10.275932	16.651138
Н	5.402966	10.010894	17.787649
С	3.249693	8.066812	18.623793
Н	2.893155	8.849739	19.095222
Н	3.759832	7.513428	19.250874
Н	2.508224	7.543849	18.254069
N	8.809229	7.050199	15.354723
N	4.114507	8.504169	17.550613
0	8.249390	12.799211	18.809536
0	7.106994	10.610676	20.122117
0	5.520040	8.611856	21.422315
0	10.590133	11.224336	18.934740
0	12.987178	9.815852	18.907222
0	11.546015	7.770186	20.100103
0	10.843883	8.770471	17.565748
0	10.219289	5.546662	21.248955
0	9.391008	9.209383	20.043692
0	9.348348	6.539366	18.890712
0	8.027984	7.245552	21.240700
0	8.273462	10.388304	17.611152
0	6.687359	8.122404	19.032427
0	5.573958	7.909363	15.910575
Мо	8.591920	11.163106	19.107412
Мо	11.284101	9.405513	19.066548
Мо	9.737150	6.991885	20.491676
Мо	6.995833	8.742285	20.613028
Ag	7.943697	8.074976	17.103318
Ι	7.690520	6.339736	11.270449

Part G. Single crystal x-ray diffraction analysis data

	(1)	(2)	(3)	(4)
Chemical formula	$\begin{array}{c} C_{73}H_{117}Ag_{2}Mo_{8}N_{5}\\ O_{28}P_{2} \end{array}$	$\begin{array}{c} C_{74}H_{116}Ag_{2}Mo_{8}N_{4}\\ O_{28}P_{2} \end{array}$	$\begin{array}{c} C_{74}H_{116}Ag_{2}As_{2}Mo_{8}N\\ _{4}O_{28}\end{array}$	$\begin{array}{c} C_{74}H_{116}Ag_{2}Mo_{8}N_{4}O_{28}S\\ b_{2} \end{array}$
M _r	2557.91	2554.90	2642.80	2736.46
Crystal system, space group	Triclinic, <i>P</i> ⁻¹	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$
Temperature (K)	130	130	130	130
a, b, c (Å)	16.5619 (3), 16.8748 (2), 16.9072 (2)	13.6714 (6), 14.9284 (5), 22.8407 (10)	13.7196 (4), 15.0038 (4), 22.9225 (7)	16.9154 (8), 18.2535 (6), 16.9286 (8)
α, β, γ (°)	92.027 (1), 100.314 (1), 98.926 (1)	90, 105.875 (4), 90	90, 105.954 (3), 90	90, 118.481 (6), 90
$V(Å^3)$	4582.84 (11)	4483.8 (3)	4536.8 (2)	4594.4 (4)
Ζ	2	2	2	2
μ (mm ⁻¹)	1.58	1.62	2.29	2.12
Crystal size (mm)	$0.18 \times 0.18 \times 0.18$	0.32 imes 0.20 imes 0.08	0.32 imes 0.32 imes 0.06	0.33 imes 0.20 imes 0.20
T_{\min}, T_{\max}	0.980, 1.000	0.896, 1.000	0.692, 1.000	0.949, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	43858, 21452, 17765	27691, 10869, 8298	23821, 10710, 8788	18507, 10216, 8972
R _{int}	0.020	0.034	0.026	0.019
θ values (°)	$\theta_{\text{max}} = 29.6, \ \theta_{\text{min}} = 3.3$	$\theta_{\text{max}} = 29.5, \ \theta_{\text{min}} = 3.4$	$\theta_{\text{max}} = 29.5, \ \theta_{\text{min}} = 3.4$	$\theta_{\text{max}} = 29.7, \ \theta_{\text{min}} = 3.5$
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.696	0.693	0.693	0.696
Range of <i>h</i> , <i>k</i> , <i>l</i>	$-22 \le h \le 22, \\ -23 \le k \le 21, \\ -23 \le l \le 23$	$-16 \le h \le 18,$ $-20 \le k \le 17,$ $-31 \le l \le 20$	$-12 \le h \le 17,$ $-19 \le k \le 20,$ $-31 \le l \le 28$	$-15 \le h \le 23,$ $-21 \le k \le 24,$ $-22 \le l \le 15$
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.026, 0.058, 1.04	0.035, 0.076, 1.06	0.030, 0.067, 1.06	0.026, 0.065, 1.05
No. of reflections, parameters, restraints	21452, 1049, 0	10869, 532, 0	10710, 532, 0	10216, 516, 1
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0216P)^{2} + 1.8031P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0215P)^{2} + 4.8146P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0257P)^{2} + 1.6793P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0273P)^{2} + 4.2731P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.81, -0.75	0.70, -0.81	0.76, -0.69	1.20, -0.67

Table S10. XRD Experimental details

	(5)	(6)	(7)	(8)
Chemical formula	$\begin{array}{c} C_{48}H_{94}Ag_{2}Cl_{2}Mo_{8} \\ N_{6}O_{28} \end{array}$	$\begin{array}{c} C_{48}H_{94}Ag_{2}Br_{2}Mo_{8}N\\ _{6}O_{28}\end{array}$	$\frac{C_{48}H_{94}Ag_2I_2Mo_8N_6O_2}{_8}$	$C_{42}H_{84}Ag_2Mo_8N_6O_{26}$
M _r	2257.45	2346.37	2440.35	2072.41
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Orthorhombic, Pbca
Temperature (K)	130	130	130	150
a, b, c (Å)	13.8548 (7), 19.3512 (6), 15.1241 (8)	13.8102 (16), 19.3590 (7), 15.2005 (11)	13.8249 (8), 19.4381 (7), 15.3544 (9)	16.7622 (8), 16.3030 (7), 23.5350 (9)
α, β, γ (°)	90, 117.004 (7), 90	90, 116.826 (12), 90	90, 116.353 (7), 90	90, 90, 90
$V(Å^3)$	3612.8 (4)	3626.5 (6)	3697.4 (4)	6431.5 (5)
Ζ	2	2	2	4
μ (mm ⁻¹)	2.02	3.04	2.74	2.18
Crystal size (mm)	$0.26 \times 0.26 \times 0.04$	$0.40 \times 0.30 \times 0.08$	0.25 imes 0.20 imes 0.05	$0.30 \times 0.30 \times 0.03$
T_{\min}, T_{\max}	0.838, 1.000	0.806, 1.000	0.737, 1.000	0.444, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20290, 8361, 6888	21463, 8647, 6075	22107, 8581, 7258	32403, 7926, 6130
R _{int}	0.030	0.054	0.030	0.050
θ values (°)	$\theta_{\text{max}} = 29.5, \ \theta_{\text{min}} = 3.4$	$\theta_{max} = 29.6, \ \theta_{min} = 1.8$	$\theta_{\text{max}} = 29.5, \ \theta_{\text{min}} = 2.0$	$\theta_{\text{max}} = 29.5, \theta_{\text{min}} = 2.0$
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.693	0.695	0.692	0.693
Range of <i>h</i> , <i>k</i> , <i>l</i>	$-17 \le h \le 16,$ $-26 \le k \le 18,$ $-13 \le l \le 20$	$-18 \le h \le 19,$ $-25 \le k \le 24,$ $-20 \le l \le 19$	$-18 \le h \le 19,$ $-19 \le k \le 26,$ $-14 \le l \le 20$	$-22 \le h \le 15,$ $-22 \le k \le 20,$ $-32 \le l \le 23$
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.036, 0.086, 1.04	0.044, 0.082, 1.02	0.036, 0.097, 1.05	0.038, 0.091, 1.11
No. of reflections, parameters, restraints	8361, 424, 0	8647, 424, 0	8581, 424, 0	7926, 379, 0
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0359P)^{2} + 6.721P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0213P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0453P)^{2} + 9.204P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0326P)^{2} + 9.3863P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	1.93, -1.54	0.93, -0.83	2.94, -2.19	1.05, -1.03

	(10)	(11)	(12)
Chemical formula	C ₅₄ H ₁₀₈ Ag ₂ Mo ₈ N ₆ O ₂₈	$C_{45}H_{93}Ag_2Mo_8N_9O_{27}$	$C_{52}H_{70}Ag_2Mo_6N_8O_{25}P_2$
M _r	2272.72	2175.54	2060.48
Crystal system, space group	Triclinic, P ⁻¹	Triclinic, P ⁻¹	Triclinic, P ⁻¹
Temperature (K)	150	130	130
a, b, c (Å)	14.1580 (4), 14.8963 (5), 19.5225 (6)	13.0475 (5), 16.5992 (6), 17.9506 (7)	11.3665 (4), 12.0432 (4), 12.7074 (4)
α, β, γ (°)	88.701 (2), 71.414 (3), 82.710 (2)	88.636 (3), 74.794 (4), 68.719 (4)	94.658 (3), 90.989 (3), 95.871 (3)
$V(Å^3)$	3870.4 (2)	3484.7 (3)	1724.09 (10)
Ζ	2	2	1
μ (mm ⁻¹)	1.82	2.02	1.74
Crystal size (mm)	$0.27 \times 0.27 \times 0.03$	0.15 imes 0.08 imes 0.06	$0.22 \times 0.20 \times 0.12$
T_{\min}, T_{\max}	0.728, 1.000	0.954, 1.000	0.922, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	34496, 18050, 13890	31154, 16091, 9159	13177, 7909, 7078
R _{int}	0.032	0.045	0.018
θ values (°)	$\theta_{\text{max}} = 29.5, \theta_{\text{min}} = 2.0$	$\theta_{\text{max}} = 29.6, \ \theta_{\text{min}} = 3.3$	$\theta_{\text{max}} = 29.4, \ \theta_{\text{min}} = 3.5$
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.693	0.694	0.691
Range of <i>h</i> , <i>k</i> , <i>l</i>	$-15 \le h \le 19,$ $-13 \le k \le 19,$ $-24 \le l \le 26$	$-15 \le h \le 16,$ $-16 \le k \le 21,$ $-22 \le l \le 21$	$-14 \le h \le 14,$ $-13 \le k \le 15,$ $-15 \le l \le 12$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.077, 1.01	0.058, 0.130, 0.96	0.024, 0.056, 1.06
No. of reflections, parameters, restraints	18050, 883, 12	16091, 793, 24	7909, 431, 1
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0251P)^{2} + 0.957P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^2(F_o^2) + (0.0514P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0215P)^2 + 0.4633P]$ where $P = (F_o^2 + 2F_c^2)/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	1.33, -0.92	1.51, -2.10	0.82, -0.57

Computer programs: *CrysAlis PRO* 1.171.38.41 (Rigaku OD, 2015), *SHELXS2014* (Sheldrick, 2014), *SHELXL2014* (Sheldrick, 2014), ShelXle (Hübschle, 2011), CIFTAB-2014 (Sheldrick, 2014).

Part H. Chromatography and ESI-MS data.

Fig. S11. HPLC-UV chromatograms of $(NBu_4)_4[\beta-Mo_8O_{26}]$ solutions: fresh (left) and aged (right).

Fig. S12. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms for 1.

Fig. S13. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms for 2.

Fig. S14. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms for 3.

Fig. S15. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms for 4.

Fig. S16. Full ESI-MS spectrum of 1 in CH_3CN . Experimental peaks have negative intensities, calculated data have positive intensity.

assignment	exp	calc
[Mo ₈ O ₂₆] ⁴⁻	296.0	295.9
[Mo ₆ O ₁₉] ²⁻	439.9	439.8
$2H^+ + [Mo_8O_{26}]^{4-}$	592.6	592.7
$2Ag^{+} + [Mo_8O_{26}]^{4-}$	699.6	699.6
$(Bu_4N)^+ + [Mo_8O_{26}]^{4-}$	834.3	834.2
$H^+ + [Mo_6O_{19}]^{2-}$	880.7	880.6
[Mo ₈ O ₂₆ Ag ₂ (PPh ₃) ₂] ²⁻	961.9	961.8
$[Mo_8O_{26}Ag_2(PPh_3)_2]^{2-} + 2H_2O$	979.7	979.9
$(Bu_4N)^+ + [Mo_6O_{19}]^{2-}$	1122.0	1122.0
$2Ag^{+} + H^{+} + [Mo_{8}O_{26}]^{4-}$	1400.2	1400.2
$(Bu_4N)^+ + Ag^+ + H^+ + [Mo_8O_{26}]^{4-}$	1534.9	1534.8
$(Bu_4N)^+ + 2Ag^+ + [Mo_8O_{26}]^{4-}$	1641.7	1641.6

Table S11. Peak assignment for the spectrum of 1 in CH_3CN .

Fig. S17. Comparison of calculated (positive intensity) and observed (negative intensity) isotopic patterns for $\{H^+ + [Mo_6O_{19}]^{2-}\}$ peak.

Fig. S18. Comparison of calculated (positive intensity) and observed (negative intensity) isotopic patterns for $\{2Ag^+ + [Mo_8O_{26}]^{4-}\}$ peak.

Fig. S19. The HPLC-UV chromatogram of the specially prepared mixture of $(Bu_4N)_4[\beta-Mo_8O_{26}]$ (the first peak) and $(Bu_4N)_2[Mo_6O_{19}]$ in CH₃CN.