Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Neutral, cationic and anionic organonickel and -palladium complexes supported by iminophosphine/phosphinoenaminato ligands.

Tomás G. Santiago, Carmen Urbaneja, Eleuterio Álvarez, Elena Ávila, Pilar Palma and Juan Cámpora*

Instituto de Investigaciones Químicas, CSIC – Universidad de Sevilla. Centro de Investigaciones Científicas "Isla de la Cartuja". C/ Américo Vespucio, 49. 41092, Sevilla, Spain.

Electronic Supporting Information (ESI)

CONTENTS

1.	Speci	Specific synthetic Procedures and characterization data					
	· (Considerations					
· Ligands and ligand precursors							
		0	<i>N</i> -(2,6-diisopropylphenyl)-1-phenylethan-1-imine (Ph(Me)C=N(DiPP)				
		0	Chlorodianisylphosphine				
		0	La-Lc				
Palladium dialkyl complexes 4a-4c4 Cationic Alkylnickel complexes and their precursors5							
		0	Complexes 6a-6c				
• Neutral Alkylnickel complexes 3a-c							
	· Monoarylnickel complexes 7a-7c and 8a-8c						
	 Spectroscopic data for mixtures of palladium aryl complexes						
2.	X-Ray	y struct	ure analysis of complexes 3b, 4c, 6b, 7b and 1611				

General Considerations

All manipulations were carried out under inert atmosphere, either using standard vacuum line operating with purified argon (previously passed through two consecutive drying and O₂-scavenging columns, filled with activated molecular sieves and reduced Cr oxide supported on silica, respectively), or a nitrogen-filled glove box equipped with a pump for solvent evaporation, an externally cooled (with liquid N₂) cavity, a freezer and an analytical balance. The glassware was oven-dried for at least 1 h prior to use. Solvents were kept refluxing under N_2 over suitable drying agents and distilled immediately prior to use. Hexane and toluene were dried over Na pieces, Et₂O and THF over sodium-benzophenone ketyl and CH₂Cl₂ over calcium hydride. Likewise, small amounts of deuterated solvents (25 mL) were dried over the corresponding drying agents (C_6D_6 and THF- d_8 , over sodium-benzophenone ketyl; and CD₂Cl₂ over LiAlH₄) and vacuum transferred to PTFE-valve glass ampoules, in which these were stored until needed. NMR spectra were recorded using Bruker DPX-300, DRX-400, Avance^{III}-400/R and DRX-500 spectrometers. NMR sample tubes with gastight PTFE valves have been systematically used for sensitive organometallic compounds. All NMR signals have been assigned with the routine assistance of gated-¹³C and broadband ³¹P decoupling, as well as a complete ensemble of 2D homonuclear (1H-1H COSY and NOESY) and heteronuclear correlations (1H-13C HSQC and HMQC). Non-conventional multiplicity abbreviations: sept: septet, d-sept: doublet of septets. Diastereotopic signals (e. g. CHMeMe and CHMeMe) are marked in italics only to facilitate signal codification and do not mean explicit/consistent stereochemical assignments. Multiplicities in the ¹³C{¹H} listings are indicated only if different of singlet. For characterization purposes, spectra were recorded in solution using the chemical shifts of the residual ¹H and the ¹³C resonances of the solvents as internal standards³⁰ and referenced with respect to TMS. ³¹P{¹H} NMR spectra for reaction monitoring were measured directly from the reaction mixtures in normal solvents, using NMR sample tubes containing a sealed glass capillary filled with a solution of PPh₃ (-6.0 ppm) in C_6D_6 that provides ³¹P and deuterium resonances as external references for chemical shift and for lock signals, respectively. Transmission FT-IR spectra were recorded in nujol emulsion in a Bruker Tensor 2 spectrometer. Gas chromatography analyses of reaction mixtures were carried out in a Shimadzu GCMS-QP20plus gas chromatograph with mass spectrometry detector equipped with a 10 m, 0.18 mm I. D. HP2 capillary column. ESI-MS spectra and elemental analysis were performed by Instrumentation Services of the IIQ (Mass Spectrometry and Analytical Services) in a Bruker ion trap Esquire 6000 and LECO True-Spec elemental analyzer, respectively. The starting materials chlorodiphenyl phosphine, chlorodiisopropylphos-phine, 2-bromoanisole, and [Pd(DBA)2] were purchased from commercial sources and used as received. The complexes $[Ni(CH_2SiMe_3)_2(Py)_2]$ (1),¹ $[Pd(CH_2SiMe_3)_2(COD)]$ (2),² and $[Ni(COD)_2]^3$ were synthesized according to methods reported in the literature. [Ni(COD)₂] was purified by recrystallization from THF prior to use.

Ligands and Ligand Precursors

N-(2,6-diisopropylphenyl)-1-phenylethan-1-imine (Ph(Me)C=N(DiPP)): This was synthesized following a standard procedure by condensation of acetophenone and 2,6-diisopropylaniline in the presence of small amount of *p*-toluensulfonic acid in boiling toluene in a Dean-Stark apparatus with azeotropic removal of water, and was recrystallized from methanol. ¹H NMR (400 MHz, 25 °C, C₆D₆): δ 1.10 (d, 6 H, ³*J*_{HH} = 7.0 Hz, Ar-CH*MeMe*), 1.16 (d, 6 H, ³*J*_{HH} = 7.0 Hz, Ar-CH*MeMe*), 1.79 (s, 3 H, -*CH*₃), 2.85 (sept, 2 H, ³*J*_{HH} = 7.0 Hz, Ar-CHMe₂), 7.13 (m, 2 H, *m*-Ph), 7.16 (m, 1 H, *p*-Ph), 7.16 (m, 2 H, *m*-C₆H₃), 7.18 (m, 1 H, *p*-C₆H₃), 8.00 (m, 2 H, *o*-Ph). ¹³C{¹H} NMR (100.6 MHz, 25 °C, C₆D₆): δ 17.9 (-*C*H₃), 23.0 (Ar-CH*Me*Me), 23.5 (Ar-CHMe*Me*), 28.8 (Ar-CHMe₂), 123.4 (*m*-C₆H₃), 124.0 (*p*-C₆H₃), 127.5 (*o*-Ph), 128.6 (*m*-Ph), 130.6 (s, *p*-Ph), 136.4 (C_q, *o*-C₆H₃), 139.5 (C_q, *ipso*-Ph), 147.4 (C_q, *ipso*-C₆H₃), 164.5 (s, *C*=N). IR (nujol, cm⁻¹): 1632 (ν(C=N)), 1577 (arom. C=C).

Chlorodi(*o*-anisyl)phosphine: This chlorophosphine was synthesized according to the method reported by Jordan,³² but starting from ClP(NEt₂)₂ instead of ClP(NMe₂). ³¹P{¹H} NMR (202.4 MHz, 25 °C, C₆D₆) δ 63.4 (s, minor isomer), 70.6 (s, major isomer). ¹H NMR (500 MHz, 25 °C, C₆D₆): δ 3.17 (s, 6 H, -OMe), 6.39 (dd, 2 H, ³J_{HP} = 5.0 Hz, ³J_{HH} = 8.2 Hz, 3-CH, P(Anis.)₂), 6.79 (t, 2 H, ³J_{HH} = 7.4 Hz, 5-CH, P(Anis.)₂), 7.07 (t, 2 H, ³J_{HH} = 7.4 Hz, 4-CH, P(Anis.)₂), 7.66 (m, 2 H, 6-CH, P(Anis.)₂).

 i Pr)₂PCH₂(Ph)C=N(dipp) (La): The general procedure gave 0.759 g (97 % yield) of the titled compound as a yellow oil. The compound was obtained as a mixture of two geometric isomers in 4:1 ratio. 31 P{ 1 H} NMR (161.9 MHz, 25 °C, C₆D₆) δ 5.2 (minor isomer), 8.1 (major isomer). 1 H NMR (C 400 MHz, 25 °C, C₆D₆): Major isomer, δ 0.70 (dd, 6 H, 3 J_{HP} = 12.1 Hz, 3 J_{HH} = 6.9 Hz, P-CH*Me*Me), 0.75 (dd, 6 H, 3 J_{HP} = 12.4 Hz, 3 J_{HH} = 6.8 Hz, P-CHM*eMe*), 1.25 (d, 6 H, 3 J_{HH} = 6.9 Hz, Ar-CH*Me*Me), 2.76 (d, 2 H, 2 J_{HP} = 1.5 Hz, P-CH₂),

3.12 (sept, 2 H, ${}^{3}J_{HH}$ = 6.8 Hz, Ar-CHMe₂), 6.82 – 7.28 (m, 6 H, CH_{arom}), 8.05 (d, 2 H, ${}^{3}J_{HH}$ = 7.0 Hz, *o*-Ph). Minor isomer: δ 0.99 – 1.10 (overlapped, 6H, (PCH*Me*Me), 1.22 – 1.37 (overlapped, 12 H, CH*Me*₂), 1.77 (m, 2 H, PC*H*Me₂), 2.95 (d, 2 H, ${}^{2}J_{HP}$ = 1.4 Hz, P-CH₂), 3.21 (sept, 2 H, ${}^{3}J_{HH}$ = 6.8 Hz, ArC*H*Me₂), 6.82 – 7.28 (m, 8H CH_{arom}). ${}^{13}C$ {¹H}NMR (100.6 MHz, 25 °C, C₆D₆): Major isomer, δ 19.1 (d, ${}^{2}J_{CP}$ = 13.0 Hz, P-CH*Me*Me), 19.6 (d, ${}^{2}J_{CP}$ = 14.7 Hz, P-CHM*eMe*), 21.7 (Ar-CH*Me*Me), 24.1 (d, ${}^{2}J_{CP}$ = 18.1 Hz, P-CHMe₂), 24.3 (Ar-CHMe*Me*), 25.9 (d, ${}^{1}J_{CP}$ = 30.6 Hz, P-CH₂), 29.1 (Ar-CHMe₂), 123.3 (*m*-CH, *N*-Ar), 124.1 (*p*-CH, *N*-Ar), 128.4 (*o*-Ph), 128.5 (*m*-Ph), 130.3 (*p*-Ph), 136.3 (*o*-C_q, *N*-Ar), 140.7 (*ipso*-C_q, Ph), 146.7 (*ipso*-C_q, *N*-Ar), 167.3 (d, ${}^{2}J_{CP}$ = 9.1 Hz, *C*=N). Minor isomer, δ 19.5 (d, ${}^{2}J_{CP}$ = 13.0 Hz, P-CHM*e*Me), 19.7 (d, ${}^{2}J_{CP}$ = 14.7 Hz, P-CHMe*Me*), 22.5 (Ar-CH*Me*Me), 24.1 (d, ${}^{2}J_{CP}$ = 18.1 Hz, P-CHMe₂), 24.6 (Ar-CHM*eMe*), 28.6 (Ar-CHMe₂), 35.7 (d, ${}^{1}J_{CP}$ = 26.2 Hz, P-CH₂), 136.3 (*o*-C_q, *N*-Ar), 138.5 (*ipso*-C_q, Ph), 146.3 (*ipso*-C_q, *N*-Ar), 168.5 (d, ${}^{2}J_{CP}$ = 11.0 Hz, *C*=N).

(Ph)₂PCH₂(Ph)C=N(dipp) (Lb):^{9b} 0.917 g (97 % yield) of the title compound as yellow oil. Two geometric isomers in 3.3:1 ratio. ³¹P{¹H} NMR (161.9 MHz, 25 °C, C₆D₆) δ -21.0 (s, minor isomer), -14.6 (s, major isomer). ¹H NMR (400 MHz, 25 °C, C₆D₆): Major isomer, δ 1.23 (d, 6 H, ³J_{HH} = 6.7 Hz, Ar-CH*Me*Me), 1.25 (d, 6 H, ³J_{HH} = 6.9 Hz, Ar-CHMe*Me*), 3.14 (sept, 2 H, ³J_{HH} = 6.8 Hz, Ar-CHMe₂), 3.56 (d, 2 H, ²J_{HP} = 1.8 Hz, P-CH₂), 6.81 – 7.27 (m, 8 H, CH_{arom}), 7.07 (m, 4 H, *m*-CH, PPh₂), 7.52 (m, 4 H, *o*-CH, PPh₂), 7.84 (d, 2 H, ³J_{HH} = 7.3 Hz, *o*-Ph); Minor isomer: δ 0.9 (d, 6 H, ³J_{HH} = 6.9 Hz, Ar-CHMe*Me*), 1.12 (d, 6 H, ³J_{HH} = 6.9 Hz, Ar-CHMe*Me*), 2.83 (sept, 2 H, ³J_{HH} = 6.9 Hz, Ar-CHMe₂), 3.68 (m, 2 H, P-CH₂), 6.81 – 7.27 (m, CH_{arom}). ¹³C{¹H} NMR (100.6 MHz, 25 °C, C₆D₆): Major isomer, δ 22.0 (CHM*e*Me), 23.9 (CHM*eMe*), 29.2 (CHMe₂), 32.7 (d, ¹J_{CP} = 26.0 Hz, P-CH₂), 123.6 (*m*-CH, *N*-Ar), 124.1 (*p*-CH, *N*-Ar), 128.2 (*m*-CH, Ph), 128.7 (*o*-CH, Ph), 128.8 (d, ²J_{CP} = 5.5 Hz, *m*-CH, PPh₂), 130.4 (*p*-CH, Ph), 133.2 (d, ²J_{CP} = 14.0 Hz, *C*=N). Minor Isomer: δ 22.5 (Ar-CH*Me*Me), 23.9 (Ar-CHM*eMe*), 28.6 (Ar-CHMe₂), 41.7 (d, ¹J_{CP} = 14.7 Hz, *ipso-C_q*, PPh₂), 139.4 (*ipso-C_q*, Ph), 139.7 (d, ¹J_{CP} = 14.7 Hz, *ipso-C_q*, PPh₂), 139.4 (*ipso-C_q*, Ph), 139.7 (d, ¹J_{CP} = 14.7 Hz, *ipso-C_q*, PPh₂), 146.4 (*ipso-C_q*, N-Ar).

(o-anisyl)₂PCH₂(Ph)C=N(dipp) (Lc): 0.576 g (55 % yield) of a microcrystalline pale-yellow solid after crystallization from *n*-pentane at -25 °C. 3:1 mixture of geometric isomers ${}^{31}P{}^{1}H{}NMR$ (161.9 MHz, 25 °C, C_6D_6): δ -31.9 (minor isomer), -27.7 (s, major isomer). ¹H NMR (400 MHz, 25 °C, C_6D_6): Major isomer, δ 1.26 (d, 12 H, ³J_{HH} = 6.7 Hz, Ar-CHMe₂), 3.02 (s, 6 H, -OMe), 3.16 (sept, 2 H, ³J_{HH} = 6.9 Hz, Ar-CHMe₂), 3.56 (d, 2 H, ²J_{HP} = 1.8 Hz, P-CH₂), 6.26 (dd, 2 H, ³*J*_{HP} = 3.1 Hz, ³*J*_{HH} = 8.0 Hz, 3-CH, P(Anis.)₂), 6.65 (t, 2 H, ³*J*_{HH} = 7.3 Hz, 5-CH, P(Anis.)₂), 6.98 (t, 2 H, ³*J*_{HH} = 7.3 Hz, 4-CH, P(Anis.)₂), 6.98 – 7.20 (m, 6H, CH_{arom}), 7.16 (d, 2 H, ³J_{HH} = 7.5 Hz, 6-CH, P(Anis.)₂), 8.05 (d, 2 H, ³J_{HH} = 7.0 Hz, o-CH, Ph). Minor isomer, δ 0.9 (d, 6 H, ³J_{HH} = 6.5 Hz, Ar-CH*Me*Me), 1.15 (d, 6 H, ³J_{HH} = 6.5 Hz, ArCHMe*Me*), 2.96 (sept, 2 H, ³*J*_{HH} = 6.5 Hz, Ar-CHMe₂), 3.12 (s, 6 H, -OMe), 4.03 (m, 2 H, P-CH₂), 6.46 (d, 2 H, ³*J*_{HH} = 6.2, 3-CH, P(Anis.)₂), 6.85 (m, 5-CH, P(Anis.)₂), 6.98 – 7.20 (m, CH_{arom}),7.26 (t, 2 H, ³J_{HH} = 6.0, 4-CH, P(Anis.)₂), 7.6 (d, 2 H, ³J_{HH} = 6.2, 6-CH, P(Anis.)₂). ¹³C{¹H} NMR (100.6 MHz, 25 °C, C₆D₆): Major isomer, δ 22.1 (Ar-CHMeMe), 24.0 (Ar-CHMeMe), 28.1 (d, ¹J_{CP} = 25.9 Hz, P-CH₂), 29.1 (s, Ar-CHMe₂), 54.7 (s, -OMe), 110.6 (3-CH, P(Anis.)₂), 121.0 (5-CH, P(Anis.)₂), 123.3 (m-CH, N-Ar), 123.7 (p-CH, N-Ar), 125.6 (d, ¹/_{CP} = 22.3 Hz, *ipso-C*_q, P(Anis.)₂), 128.7 (o-CH, Ph), 130.4 (s, 4-CH, P(Anis.)₂), 134.1 (6-CH, P(Anis.)₂), 136.2 (o-C_a N-Ar), 140.3 (ipso-C_a, N-Ar), 140.7 (ipso-C_a, Ph), 160.9 (2-C_a, P(Anis.)₂), 161.7 (d, ²*I*_{CP} = 11.1 Hz, *C*=N). Minor Isomer, δ 22.5 (Ar-CH*Me*Me), 24.5 (Ar-CHMe*Me*), 27.7 (d, ¹*J*_{CP} = 16.4 Hz, P-CH₂), 28.6 (Ar-CHMe₂), 55.1 (s, -OMe), 110.6 (s, 3-CH, P(Anis.)₂), 121.2 (5-CH, P(Anis.)₂), 130.1 (4-CH, P(Anis.)₂), 134.3 (6-CH, $P(Anis.)_2)$, 138.0 (*ipso-C*_q, Ph), 166.6 (d, ${}^2J_{CP}$ = 12.8 Hz, C=N).

Palladium dialkyl complexes 4a-4c

[Pd(CH₂SiMe₃)₂(La)], **(4a)**: Crystallized from pentane. Starting from 0.339 g (0.870 mmol) of **2**, and an equimolar amount of **La** (0.324 g) the procedure gives 0.316 g (0.468 mmol, 57 % yield) of dark-yellow crystals. ³¹P{¹H} NMR (161.9 MHz, 25 °C, C₆D₆): δ 37.3 (s). ¹H NMR (400 MHz, 25 °C, C₆D₆): δ 0.04 (d, 2 H, ³J_{HP} = 9.5 Hz, *CH*₂SiMe₃ (P-*cis*)), 0.38 (s, 9 H, *CH*₂Si*Me*₃ (P-*trans*)), 0.49 (s, 9 H, *CH*₂Si*Me*₃ (P-*cis*)), 0.76 (d, 6 H, ³J_{HH} = 7.0 Hz, Ar-CH*Me*Me), 0.91 (d, 2 H, ³J_{HP} = 11.7 Hz, *CH*₂SiMe₃ (P-*trans*)), 0.97 (dd, 6 H, ³J_{HP} = 12.2 Hz, ³J_{HH} = 7.0 Hz, P-CH*Me*Me), 1.17 (dd, 6 H, ³J_{HP} = 15.4 Hz, ³J_{HH} = 7.0 Hz, P-CHMe*Me*), 1.46 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CHMe*Me*), 1.78 (d-sept, 2 H, ²J_{HP} = 6.8 Hz, ³J_{HH} = 7.4 Hz, P-CHMe₂), 2.81 (d, 2 H, ²J_{HP} = 7.7 Hz, P-CH₂), 3.50 (m, 2 H, Ar-CHMe₂), 6.75 (m, 1 H, *p* -Ph), 6.77 (t, 2 H, ³J_{HH} = 7.5 Hz, *m*-Ph), 6.92 (d, 2 H, ³J_{HH} = 6.6 Hz, *o*-Ph), 7.02 (m, 2 H, *m*-N-Ar), 7.06 (m, 1 H, *p*-N-Ar). ¹³C{¹H</sup>}NMR (100.6 MHz, 25 °C, C₆D₆): δ -10.1 (d, ²J_{CP} = 4.3 Hz, CH₂SiMe₃ (P-*cis*)), 4.3 (CH₂Si*M*e₃ (P-*trans*)), 5.7 (CH₂Si*M*e₃ (P-*cis*)), 10.9 (d, ²J_{CP} = 101.1 Hz, CH₂SiMe₃ (P-*trans*)), 18.8 (P-CH*M*eMe), 22.9 (P-CHMe*M*e), 23.7 (d, ¹J_{CP} = 49.3 Hz, P-CHMe₂), 23.8 (ArCH*M*eMe), 25.3 (ArCHMe*M*e), 28.6 (ArCHMe₂), 37.3 (d, ¹J_{CP} = 4.5 Hz, *ipso*-C_q, Ph), 139.3 (*o*-C_q, N-Ar), 144.8 (*ipso*-C_q, N-Ar), 176.6 (d, ²J_{CP} = 10.0 Hz, C=N). IR (Nujol mull, cm⁻¹): 1588, 1566 (Arom C-C and C=N), 1237 (SiMe₃), 846, 815 (SiMe₃). Anal. Calcd for C₃₄H₆₀NPPdSi₂: C, 60.37; H, 8.94; N, 2.07. Found: C, 60.50; H, 8.65; N, 2.27.

[Pd(CH₂SiMe₃)₂(Lb)], (4b): Crystallized from CH₂Cl₂/*n*-hexane. Starting from 0.300 g (0.771 mmol) of complex **2** and an equimolar amount of Lb (0.357 g, 0.771 mmol), the general procedure gave 0.521 g (0.702 mmol, 91% yield) of dark yellow crystals of the product. ³¹P{¹H} NMR (161.9 MHz, 25 °C, C₆D₆): δ 19.9 (s). ¹H NMR (400 MHz, 25 °C, C₆D₆): δ 0.12 (d, 2 H, ³J_H =

9.9 Hz, $CH_{2}SiMe_{3}$ (P-*cis*)), 0.35 (s, 9 H, $CH_{2}SiMe_{3}$ (P-*trans*)), 0.51 (s, 9 H, $CH_{2}SiMe_{3}$ (P-*cis*)), 0.52 (d, 6 H, ${}^{3}J_{HH}$ = 6.8 Hz, Ar-CHMeMe), 1.19 (d, 2 H, ${}^{3}J_{HP}$ = 12.6 Hz, $CH_{2}SiMe_{3}$ (P-*trans*)), 1.44 (d, 6 H, ${}^{3}J_{HH}$ = 6.8 Hz, Ar-CHMeMe), 3.29 (sept, 2 H, ${}^{3}J_{HH}$ = 6.7 Hz, Ar-CHMe₂), 3.67 (d, 2 H, ${}^{2}J_{HP}$ = 7.8 Hz, CH_{2}), 6.69 (m, 1 H, *p*-Ph), 6.70 (t, 2 H, ${}^{3}J_{HH}$ = 8 Hz, *m*-Ph), 6.75 (d, 2 H, ${}^{3}J_{HH}$ = 6.7 Hz, *o*-Ph), 7.04 (m, 2 H, *m*-N-Ar), 7.05 (m, 4 H, *m*-CH, PPh₂), 7.08 (m, 1 H, *p*-N-Ar), 7.19 (m, 2 H, *p*-CH, PPh₂), 7.64 (dd, 4 H, ${}^{3}J_{HP}$ = 9.7 Hz, ${}^{3}J_{HH}$ = 7.8 Hz, *o*-CH, PPh₂). ${}^{13}C{}^{1H}$ NMR (100.6 MHz, 25 °C, C₆D₆): δ - 4.9 (d, ${}^{2}J_{CP}$ = 3.9 Hz, $CH_{2}SiMe_{3}$ (P-*cis*)), 3.8 (CH₂Si*Me*₃ (P-*cis*)), 5.6 (CH₂Si*Me*₃(P-*cis*)), 11.4 (d, ${}^{2}J_{CP}$ = 101.1 Hz, $CH_{2}SiMe_{3}$ (P-*trans*)), 23.4 (Ar-CH*Me*Me), 24.8 (Ar-CHMeMe), 28.6 (Ar-CHMe₂), 45.0 (d, ${}^{1}J_{CP}$ = 18.3 Hz, P-CH₂), 124.2 (*m*-CH, *N*-Ar), 126.7 (*p*- CH, *N*-Ar), 128.8 (*p*-CH, Ph), 128.8 (d, ${}^{3}J_{CP}$ = 8.7 Hz, *m*-CH, PPh₂), 129.3 (*m*-CH, Ph), 130.2 (*o*-CH, Ph), 130.3 (*p*-CH, PPh₂), 133.3 (d, ${}^{2}J_{CP}$ = 13.2 Hz, *o*-CH, PPh₂), 134.1 (d, ${}^{1}J_{CP}$ = 23.4 Hz, *ipso*-C_q, PPh₂), 136.2 (d, ${}^{3}J_{CP}$ = 4.5 Hz, *ipso*-C_q, Ph), 138.6 (*o*-C_q, *N*-Ar), 144.6 (*ipso*-C_q, *N*-Ar), 173.7 (d, ${}^{2}J_{CP}$ = 9.9 Hz, *C*=N). IR (Nujol mull, cm⁻¹): 1587, 1560 (Arom C-C and C=N), 1235 (SiMe₃), 844, 821 (P-C). Anal. Calcd. for C₄₀H₅₆NPPdSi₂: C, 64.54; H, 7.58; N, 1.88. Found: C, 64.40; H, 7.65; N, 1.96.

[Pd(CH₂SiMe₃)₂(Lc)], (4c): Crystallized from CH₂Cl₂/n-hexane. Starting from 0.100 g (0.257 mmol) of complex 2 and an equimolar amount of Lc (0.134 g, 0.257 mmol), the general procedure gave 0.188 g (0.234 mmol, 91% yield) of dark yellow crystals of the product. ³¹P{¹H} NMR (161.9 MHz, 25 °C, C₆D₆): δ 15.1 (s). ¹H NMR (400 MHz, 25 °C, C₆D₆): δ 0.05 (d, 2 H, ³J_{HP} = 10.0 Hz, CH₂SiMe₃ (P-cis)), 0.25 (s, 9 H, CH₂SiMe₃ (P-trans)), 0.51 (s, 9 H, CH₂SiMe₃ (P-cis)), 0.62 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CHMeMe), 1.07 (d, 2 H, ³J_{HP} = 12.7 Hz, CH₂SiMe₃ (P-trans)), 1.52 (d, 6 H, ³J_{HH} = 6.7 Hz, Ar-CHMeMe), 3.11 (s, 6 H, -OMe), 3.31 (sept, 2 H, ³/_{HH} = 6.8 Hz, Ar-CHMe₂), 4.39 (d, 2 H, ²/_{HP} = 9.1 Hz, P-CH₂), 6.40 (dd, 2 H, ⁴/_{HP} = 3.0 Hz, ³/_{HH} = 8.3 Hz, 3-CH, P(Anis.)₂), 6.70 (m, 1 H, *p*-Ph), 6.72 (m, 2 H, *m*-Ph), 6.92 (t, 2 H, ³*J*_{HH} = 7.5 Hz, 5-C*H*, P(Anis.)₂), 6.97 (d, 2 H, ³*J*_{HH} = 8.1 Hz, *o*-Ph), 7.08 (d, 2 H, ³*J*_{HH} = 4.3 Hz, *m*-*N*-Ar), 7.11 (m, 1 H, *p*-*N*-Ar), 7.11 (t, 2 H, ³*J*_{HH} = 7.8 Hz, 4-CH, P(Anis.)₂), 8.20 (dd, 2 H, ³*J*_{HP} = 8.3 Hz, ³*J*_{HH} = 7.5 Hz, 6-CH, P(Anis.)₂). ¹³C{¹H} NMR (100.6 MHz, 25 °C, C₆D₆): δ - 6.1 (d, ²J_{CP} = 3.8 Hz, CH₂SiMe₃ (P-*cis*)), 3.7 (CH₂SiMe₃ (Ptrans)), 5.7 (CH₂SiMe₃ (P-cis)), 10.4 (d, ²J_{CP} = 103.1 Hz, CH₂SiMe₃ (P-trans)), 23.4 (Ar-CHMeMe), 24.7 (Ar-CHMeMe), 28.4 (ArCHMe₂), 42.2 (d, ¹*J*_{CP} = 21.6 Hz, P-CH₂), 55.1 (-OMe), 111.3 (3-CH, P(Anis.)₂), 120.7 (d, ³*J*_{CP} = 11.0 Hz, 5-CH, P(Anis.)₂), 121.2 (d, ¹J_{CP} = 24.8 Hz, 1-C_q, P(Anis.)₂), 124.0 (*m*-CH *N*-Ar), 126.3 (*p*-CH, N-Ar), 128.0 (*m*-CH Ph), 129.1 (*o*-CH, Ph), 129.9 (*p*-CH, Ph), 132.0 (4-CH, P(Anis.)₂), 136.9 (d, ³J_{CP} = 6 Hz, *ipso*-C_q, Ph), 137.1 (d, ²J_{CP} = 19.0 Hz, 6-CH, P(Anis.)₂), 138.5 (*o*-C_q, *N*-Ar), 144.9 (*ipso-C*_q, *N-Ar*), 160.9 (2-C_q, P(Anis.)₂), 175.4 (d, ²J_{CP} = 12.0 Hz, C=N). IR (Nujol mull, cm⁻¹): 1588, 1572 (Arom C-C and C=N), 1247 (v as, C-O-C), 1236 (SiMe₃), 842, 846 (SiMe₃). Anal. Calcd. for C₄₂H₆₀NO₂PPdSi₂: C, 62.70; H, 7.52; N, 1.74. Found: C, 62.50; H, 7.55; N, 1.84.

Cationic Alkylnickel complexes and their precursors.

Dipyridinium Triflate, [Py₂H]+ [TfO]-: To a stirred solution of pyridine (0.162 ml, 2 mmol) in Et₂O (10 mL) at – 40 °C, 3.22 mL of a 0.31 M solution of triflic acid (1 mmol) in Et₂O, was added dropwise. A white precipitate was immediately formed as the acid was added. The cold bath was removed and the stirring was continued for 30 min. at the room temperature. The resulting suspension was decanted, the remaining solvent was filtered off and the solid was dried under vacuum. The compound was isolated as a pure white solid without further purification with a yield of 59 % (0.181 g, 0.587 mmol). The product was stored in the globe box freezer at – 25 °C. ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ 8.05 (t, 4 H, ³J_{HH} = 6.8 Hz, β -CH, Py), 8.56 (t, 2 H, ³J_{HH} = 7.9 Hz, γ -CH, Py), 8.86 (d, 4 H, ³J_{HH} = 5.4 Hz, α -CH, Py), 13.9 (br s, 1 H, N-H···N).

[Ni(CH₂SiMe₃)(Py)₃] + [TfO]⁻ (5): In the glove box, a solution of [Py₂H]⁺ [TfO]⁻ (0.036 g, 0.117 mmol) in 3 mL of THF was added to a pre-cooled (frozen at the liquid N₂ temperature) scintillation vial containing a small magnetic stir bar and 3 ml of solution of Ni(CH₂SiMe₃)₂Py₂ (0.088 g, 0.226 mmol) in the same solvent (THF). The mixture was shaken and stirred for 1 h at the room temperature. The solvent was evaporated under reduced pressure. The oily residue solidified when it was stirred with 3 mL of hexane at - 80 °C. The suspension was filtered and the solid dried under vacuum to afford 5 as a greenish yellow powder in a 99 % yield. ¹H NMR (400 MHz, 25 «C, CD₂Cl₂): δ -0.24 (s, 2 H, CH₂SiMe₃), -0.11 (s, 9 H, CH₂SiMe₃), 7.31 (t, 4 H, ²J_{HH} =6.6 Hz, β -Py (C-*cis*)), 7.35 (br, partially hidden, 2 H, β -Py (C-*trans*), 7.69 (br, partially hidden, 1 H, γ -Py (C-*trans*)), 7.71 (t, 2 H, ²J_{HH} = 7.5 Hz, γ-Py (C-cis)), 8.73 (br, 2 H, α-Py (C-trans)), 9.05 (d, 4 H, ²J_{HH} = 5.2 Hz, α-Py (C-cis)). ¹H NMR (400 MHz, -20 °C, CD₂Cl₂): δ-0.32 (s, 2 H, CH₂SiMe₃), -0.17 (s, 9 H, CH₂SiMe₃), 7.25 (partially hidden t, 2 H, ²J_{HH} =6.7 Hz, β-Py (C-*trans*), 7.30 (t, 4 H, ²J_{HH} =6.3 Hz, β-Py (C-*cis*)), 7.67 (partially hidden t, 1 H, ²J_{HH} = 7.5 Hz, γ-Py (C-*trans*)), 7.70 (t, 2 H, ²J_{HH} = 7.0 Hz, γ-Py (C-*cis*)), 8.62 (d, 2 H, ²*J*_{HH} = 4.3 Hz, α-Py (C-*trans*)), 8.97 (d, 4 H, ²*J*_{HH} = 4.7 Hz, α-Py (C-*cis*)). ¹³C{¹H} NMR (100.6 MHz, 25 °C, C₆D₆): δ 1.3 (CH₂SiMe₃), 5.6 (CH₂SiMe₃), 125.6 (β-CH, Py (C-*cis*)), 126.1 (br, partially hidden, β-CH, Py (C-*trans*)), 138.2 (γ-CH, Py (C-*cis*)), 138.5, (br, partially hidden, γ -CH, Py (C-trans)), 148.9 (br, α -CH, Py (C-trans)), 151.6 (α -CH, Py (C-cis)). ¹⁹F NMR (376.5 MHz, 25 °C, CD₂Cl₂), δ -77.5 (OTf). ESI-MS (THF): Positive m/z: 382.1 (M⁺, very low intensity); 303.1 (M⁺-Py, I = 100 %); 224.1 (M⁺- 2 Py, I = 66 %). Negative m/z: 148.8 (OTf⁻). IR (nujol mull): 1605 (sh, v(C=C) Py), 1409 (sh, δ C-H, Py), 1222 (doublet split, Si-C-H, SiMe₃), 1180 (st, br, v S=O, OTf), 1069 (sh, v_{as} CF₃), 849 (v_s SiMe₃), 765 (v_{as} SiMe₃). Anal. Calcd. for C₂₀H₂₆F₃N₃NiO₃SSi: C, 45.13; H, 4.92; N, 7.89; S, 6.02. Found: C, 45.01; H, 4.59; N, 8.29; S, 6.18.

[Ni(CH₂SiMe₃)(La)(Py)]⁺[OTf]⁻, 6a: Starting from 0.116 g (0.3 mmol) of 1, 0.092 g of [Py₂H]⁺[TfO]⁻ (0.3 mmol) and 3.0 mL of a 0.1 M solution of La in THF, the above procedure afforded 0.19 g (0.247 mmol) of the product (82 % yield) as a yellow oil that solidified as a yellow powder upon drying under vacuum. ³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 51.5 (s). ¹H NMR

(400 MHz, 25 °C, CD₂Cl₂): δ -0.56 (d, 2 H, ³*J*_{HP} = 9.1 Hz, C*H*₂SiMe₃), -0.32 (s, 9 H, CH₂Si*Me*₃), 0.60 (d, 6 H, ³*J*_{HH} = 6.7 Hz, Ar-CHMeMe), 1.54 (dd, 6 H, ³*J*_{HP} = 15.4 Hz, ³*J*_{HH} = 7.3 Hz, P-CHMeMe), 1.61 (dd, 6 H, ³*J*_{HP} = 16.7 Hz, ³*J*_{HH} = 7.0 Hz, P-CHMeMe), 2.43 (d sept, 2 H, ²*J*_{HP} = 9.5 Hz, ³*J*_{HH} = 7.2 Hz, P-CHMe₂), 3.20 (sept, ³*J*_{HH} = 6.6 Hz, 2 H, Ar-CHMe₂), 3.59 (d, 2 H, ²*J*_{HP} = 9.6 Hz, P-CH₂), 6.92 (d, 2 H, ³*J*_{HH} = 7.8 Hz, *m*-N-Ar), 7.08 (d, 2 H, ³*J*_{HH} = 7.8 Hz, *o*-Ph), 7.12 (t, 2 H, ³*J*_{HH} = 7.3 Hz, β -Py), 7.12 (m, 1 H, *p*-N-Ar), 7.18 (t, 2 H, ³*J*_{HH} = 8 Hz, *m*-Ph), 7.34 (m, 1 H, *p*-Ph), 7.63 (t, 1 H, ³*J*_{HH} = 7.7 Hz, γ -Py), 8.30 (d, 2 H, ³*J*_{HH} = 6.3 Hz, *α*-Py). ¹³C{¹H} NMR (100.6 MHz, 25 °C, CD₂Cl₂): δ -7.7 (d, ²*J*_{CP} = 35.4 Hz, CH₂SiMe₃), 1.7 (CH₂Si*M*e₃), 17.9 (P-CH*M*eMe), 18.9 (P-CHMeMe), 23.8 (Ar-CH*M*eMe), 24.0 (Ar-CHMeMe₂), 24.5 (d, ¹*J*_{CP} = 29.3 Hz, P-CHMe₂), 28.9 (Ar-CHMe₂), 38.4 (d, ¹*J*_{CP} = 20.2 Hz, P-CH₂), 124.8 (*m*-CH, *N*-Ar), 125.0 (β -CH, Py), 138.6 (*o*-C_{*q*}, *N*-Ar), 142.7 (s, *ipso*-C_{*q*}, *N*-Ar), 150.5 (*α*-CH, Py), 179.5 (d, ²*J*_{CP} = 7.1 Hz, *C*=N). ¹⁹F NMR (376.5 MHz, 25 °C, CD₂Cl₂): δ -78.1 (br, OTf). ESI-MS (THF): Positive m/z: 542.3 (M⁺-Py + 2H). Negative m/z: 148.8 (OTf⁻). IR (nujol mull, cm⁻¹): 1634 (sh, m, Py), 1554 (m, sh, C=C Arom), 1223 (m, SiMe₃) 1153 (st, br, *v*(S=O) OTf), 849, 827 (st, SiMe₃). Anal. Calcd for C₃₆H₅₄F₃N₂NiO₃PSSi: C, 56.18; H, 7.07; N, 3.64; S, 4.17. Found: C, 56.02; H, 6.87; N, 3.85; S, 4.41.

[Ni(CH₂SiMe₃)(Lb)(Py)]⁺[OTf]⁻, 6b: Starting from 0.098 g (0.254 mmol) of 1, 0.078 g of [Py₂H]⁺[TfO]⁻ (0.254 mmol) and 1.0 mL of a 0.253 M solution of Lb in THF, the above procedure afforded 0.19 g (0.247 mmol) of the product (82 % yield) as a yellow solid, that crystallized by layering hexane over a dichloromethane solution at -25 °C. ³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 39.3 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ -0.55 (s, 9 H, CH₂Si*Me*₃), -0.33 (d, 2 H, ³J_{HP} = 9.8 Hz, CH₂SiMe₃), 0.30 (d, 6 H, ³J_{HH} = 6.5 Hz, Ar-CHMeMe), 1.10 (d, 6 H, ³J_{HH} = 6.5 Hz, Ar-CHMeMe), 3.51 (sept, 2 H, ³J_{HH} = 6.2 Hz, Ar-CHMe₂), 4.56 (d, 2 H, ²J_{HP} = 11.6 Hz, P-CH₂), 6.85 (d, 2 H, ³J_{HH} = 7.8 Hz, *m*-N-Ar), 7.04 (t, 1 H, ³J_{HH} = 7.8 Hz, *p*-N-Ar), 7.07 (d, 2 H, ³J_{HH} = 8.1 Hz, *o*-Ph), 7.17 (m, 2 H, β -Py), 7.17 (m, 2 H, m-Ph), 7.31 (m, 1 H, p-Ph), 7.62 (m, 1 H, γ -Py), 7.62 (m, 4 H, (m-CH PPh₂), 7.70 (m, 2 H, p-CH PPh₂), 7.91 (dd, 4 H, ³J_{HP} = 11.3 Hz, ³J_{HH} = 7.8 Hz, *o*-CH PPh₂), 8.52 (d, 2 H, ³J_{HH} = 4.9 Hz, *α*-Py). ¹³C{¹H} NMR (100.6 MHz, 25 °C, CD₂Cl₂): δ 1.2 (d, ²J_{CP} = 31.4 Hz, CH₂SiMe₃), 1.2 (CH₂SiMe₃), 23.1 (s, Ar-CHMeMe), 23.7 (Ar-CHMeMe), 28.8 (s, Ar-CHMe₂), 45.6 $(d, {}^{1}J_{CP} = 25.3 \text{ Hz}, P-CH_2), 124.5 (m-CH N-Ar), 124.9 (\beta-CH Py), 127.7 (p-CH N-Ar), 127.9 (d, {}^{1}J_{CP} = 53.8 \text{ Hz}, ipso-C_q PPh_2), 128.6$ (m-CH Ph), 128.6 (p-CH PPh₂), 129.6 $(d, {}^{3}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (o-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (p-CH Ph), 132.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (p-CH Ph), 133.3 $(d, {}^{2}J_{CP} = 10.5 \text{ Hz}, m$ -CH PPh₂), 130.1 (p-CH Ph), 130.1 (p), 130.1 (p-CH P o-CH PPh₂), 133.7 (d, ³*J*_{CP} = 5.9 Hz, *ipso*-C_q Ph), 138.2 (γ-CH Py), 138.6 (o-C_q N-Ar), 142.2 (*ipso*-C_q N-Ar), 150.8 (α-CH Py), 177.3 (d, ${}^{2}J_{CP}$ = 7.2 Hz, C=N). ${}^{19}F$ NMR (376.5 MHz, 25 °C, CD₂Cl₂): δ 78.3 (s) (OTf⁻). ESI-MS (THF). Positive, m/z: 542.3 (M⁺- Py). Negative, m/z: 148.8 (OTf). IR (nujol mull, cm⁻¹): 1605 (sh, m, Py), 1560 (m, C=C Arom.), 1223 (m, SiMe₃) 1153 (st, br ν S=O, OTf), 849, 827 (st, SiMe₃). Although the NMR spectra indicate that the samples of this complex were spectroscopically pure, elemental analyses were unsuccessful possibly due to combustion problems.

[Ni(CH₂SiMe₃)(Lc)(Py)]*[OTf], 6c: The general procedure for the preparation of the cationic monoalkyl Ni(II) complex starting from Lc ligand (0.100 g, 0.191 mmol), Ni(CH₂SiMe₃)₂Py₂ (0.074 g, 0.191 mmol) and Py₂H⁺ TfO⁻ (0.076 g, 0.191 mmol) gave a yellow solid with an 84 % (0.145 g, 0.161 mmol) yield. This compound is formed as a mixture of geometric isomers in variable ratio. ³¹P {¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 25.5 (s, major) 29.9 (s, minor). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): Major isomer, δ -0.61 (s, 9 H, CH₂Si*Me*₃), -0.58 (d, 2 H, ³*J*_{HP} = 10 Hz, CH₂SiMe₃), 0.43 (d, 6 H, ³*J*_{HH} = 6.7 Hz, Ar-CH*Me*Me), 1.22 (d, 6 H, ³J_{HH} = 6.7 Hz, Ar-CHMe*Me*), 3.58 (m, 2 H, Ar-CHMe₂), 4.01 (s, 6 H, -O*Me*), 4.41 (d, 2 H, ²J_{HP} = 12.0 Hz, P-CH₂), 6.88 (d, 2 H, ³J_{HH} = 7.8 Hz, m-N-Ar), 6.95 (d, 2 H, ³J_{HH} = 7.8 Hz, o-Ph), 7.06 (t, 1 H, ³J_{HH} = 7.7 Hz, p-N-Ar), 7.16 (m, 2 H, m-Ph), 7.18 (m, 2 H, 3-CH, P(Anis.)₂), 7.19 (m, 2 H, 5-CH, P(Anis.)₂), 7.20 (m, 2 H, β-Py), 7.30 (t, 1 H, ³J_{HH} = 7.4 Hz, *p*-Ph), 7.64 (t, 1 H, ³J_{HH} = 7.7 Hz, γ-Py), 7.69 (t, 2 H, ${}^{3}J_{HH}$ = 7.9 Hz, 4-CH, P(Anis.)₂), 7.84 (m, 2 H, 6-CH, P(Anis.)₂), 8.45 (d, 2 H, ${}^{3}J_{HH}$ = 4.8 Hz, α -Py). Minor isomer: δ -0.49 (d, 2H, ${}^{3}J_{HP}$ = 11.6 Hz, CH₂SiMe₃), -0.27 (s, 9H, CH₂SiMe₃), 0.69 (d, 6 H, ${}^{3}J_{HH}$ = 6.9 Hz, Ar-CHMeMe, 1.49, (d, 6H, ${}^{3}J_{HH}$ = 6.8 Hz, Ar-CHMeMe, 3.30 (sept, 2 H, ³*J*_{HH} = Ar-CHMe₂), 3.91 (s, 6 H, -OMe), 4.15 (d, 2 H, ²*J*_{HP} = 11.4 Hz, P-CH₂). ¹³C {¹H} NMR (100.6 MHz, 25 °C, CD₂Cl₂): Major isomer, δ 0.2 (CH₂SiMe₃), 0.9 (CH₂SiMe₃), 23.2 (Ar-CHMeMe), 23.7 (Ar-CHMeMe), 29.0 (Ar-CHMe₂), 45.0 (d, ¹/_{CP} = 30.5 Hz, P-CH₂), 56.1 (-OMe), 112.1 (3-CH P(Anis.)₂), 114.7 (d, ¹/_{CP} = 57.0 Hz, *ipso-C*_q P(Anis.)₂), 121.4 (d, ³/_{CP} = 12.0 Hz, 5-CH, P(Anis.)₂), 124.6 (*m*-CH, *N*-Ar), 124.9 (β-CH, Py), 127.8 (*p*-CH *N*-Ar), 128.7 (*m*-CH, Ph), 129.6 (*o*-CH, Ph), 131.8 (p-CH, Ph), 134.0 (d, ³J_{CP} = 8.4 Hz, *ipso-C*_q Ph), 134.6 (4-CH P(Anis.)₂), 136.6 (d, ²J_{CP} = 12.6 Hz, 6-CH P(Anis.)₂), 138.2 (o-C_q, N-Ar), 138.3 (γ-CH Py), 142.5 (*ipso-C*_q N-Ar), 150.6 (α-CH Py), 160.1 (2-C_q P(Anis.)₂), 178.7 (d, ²J_{CP} = 9.1 Hz, C=N). ESI-MS (THF): Positive, m/z: 668.3 (M⁺-Py). Negative, m/z: 148.8 (OTf⁻). IR (nujol mull, cm⁻¹): 1605 (sh, m, Py), 1587, 1575, 1559 (m, C=N or C=C Arom), 1246 (st, 12 as Ar-O-Me) 1222 (SiMe3), 1153 (st, br v S=O, OTf), 847, 827 (st, SiMe3). Anal. Calcd. for C₄₄H₅₄F₃N₂NiO₅PSSi: C, 58.87; H, 6.06; N, 3.12; S, 3.57. Found: C, 58.88; H, 3.99; N, 3.39; S, 3.63.

Neutral Alkylnickel Complexes [Ni(CH₂SiMe₃)(L')(Py)] (L' = deprotonated L), 3a-c.

[Ni(CH₂SiMe₃)(L'a)(Py)], 3a: Starting from 0.089 g (0.23 mmol) of **1**, and equimolar amounts of $[HPy_2]^+[OTf]^-$ (0.071 g) and **La** (0.120 g), the reaction with NaH (0.055 g, 2.30 mmol) conducted as described above, and evaporation of the THF solvent gave a yellow solid. The remaining NaOTf was removed by extraction with a 1:1 Et₂O/hexane mixture. The product precipitated when extract was slowly evaporated under reduced pressure to some less than ca. 50 % of the initial volume. The resulting yellow microcrystalline solvent was filtrated, washed with a small amount of hexane and dried under vacuum. Yield, 0.100 g (0.161 mmol), 65 %. ³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 47.9 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ -0.40 (s, 9 H,

CH₂Si*M*e₃), -1.13 (d, 2 H, ³*J*_{HP} = 7.6 Hz, C*H*₂SiMe₃), 0.60 (d, 6 H, ³*J*_{HH} = 6.8 Hz, Ar-CH*M*eMe), 1.02 (d, 6 H, ³*J*_{HH} = 6.9 Hz, Ar-CHMeMe), 1.43 (dd, 6 H, ³*J*_{HP} = 13.5 Hz, ³*J*_{HH} = 6.9 Hz, P-CH*M*eMe), 1.55 (dd, 6 H, ³*J*_{HP} = 15.8 Hz, ³*J*_{HH} = 7.0 Hz, P-CHMeMe), 2.05 (d sept, 2 H, ²*J*_{HP} = 8.9 Hz, ³*J*_{HH} = 7.0 Hz, P-CHMe₂), 3.22 (s, 1 H, P-C*H*=), 3.69 (sept, 2 H, ³*J*_{HH} = 6.8 Hz, Ar-C*H*Me₂), 6.61 (d, 2 H, ³*J*_{HH} = 7.6 Hz, *m*-N-Ar), 6.73 (t, 1 H, ³*J*_{HH} = 6.8 Hz, *p*-N-Ar), 6.87 (m, 2 H, β -Py), 6.88 (m, 2 H, *m*-Ph), 6.94 (m, 1 H, *p*-Ph), 6.97 (d, 2 H, ³*J*_{HH} = 6.8 Hz, *o*-Ph), 7.38 (t, 1 H, ³*J*_{HH} = 7.7 Hz, *γ*-Py), 8.35 (d, 2 H, ³*J*_{HH} = 4.2 Hz, *α*-Py). ¹³C{¹H} NMR (100.6 MHz, 25 °C, CD₂Cl₂): δ -13.1 (d, ²*J*_{CP} = 36.3 Hz, CH₂SiMe₃), 2.5 (CH₂Si*M*e₃), 18.4 (P-CH*M*eMe), 20.0 (P-CHMe*M*e), 24.1 (Ar-CH*M*eMe), 24.4 (s, Ar-CHMeMe), 25.2 (d, ¹*J*_{CP} = 32.0 Hz, P-CHMe₂), 28.3 (ArCHMe₂), 69.8 (d, ¹*J*_{CP} = 47.0 Hz, P-CH=), 122.7 (*m*-CH *N*-Ar), 123.1 (*p*-CH *N*-Ar), 123.4 (*β*-CH Py), 126.8 (*m*-CH Ph), 126.8 (*p*-CH Ph), 129.6 (*o*-CH Ph), 135.8 (*γ*-CH Py), 141.2 (d, ³*J*_{CP} = 16.1 Hz, *ipso*-C_q Ph), 142.9 (*o*-C_q *N*-Ar), 149.1 (*ipso*-C_q N-Ar), 151.4 (*α*-CH Py), 175.3 (d, ²*J*_{CP} = 21.4 Hz, *C*=N). IR (nujol mull, cm⁻¹): 1634 (*ν* C=C, Py), 1621 (*ν* C=C arom.), 1236 (SiMe₃), 849, 820 (C-H arom, SiMe₃). Anal. Calcd for C₃₅H₅₃N₂NiPSi: C, 67.85; H, 8.62; N, 4.52. Found: C, 68.03; H, 8.81; N, 4.39.

[Ni(CH₂SiMe₃)(L'b)(Py)], 3b: This complex can also be prepared directly from 1 and Lb as described in the main text. Starting from 0.023 g (0.060 mmol) of 1, and equimolar amounts of [HPy₂]⁺[OTf]⁻ (0.018 g) and Lb (0.237 🗉 of a 0.253 M solution in THF)), the reaction with NaH (0.014 g, 0.6 mmol) conducted as described above, and evaporation of the THF solvent gave a yellow solid. The remaining NaOTf was removed by extraction with a 1:1 toluene/hexane mixture. The extract was evaporated to dryness and the residue was crystallized by slow diffusion of hexane into a CH₂Cl₂ solution at -25 °C. The yellow crystals were filtrated, and dried under vacuum. Yield, 0.020 g (0.029 mmol), 50 %. ³¹P {¹H}NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 32.4 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ -0.82 (d, 2 H, ³J_{HP} = 7.8 Hz, CH₂SiMe₃), -0.63 (s, 9 H, CH₂SiMe₃), 0.50 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CHMeMe), 1.07 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CHMeMe), 3.78 (s, 1 H, PCH=), 3.97 (sept, 2 H, ³J_{HH} = 6.7 Hz, Ar-CHMe₂), 6.63 (d, 2 H, ³J_{HH} = 7.5 Hz, *m*-N-Ar), 6.73 (t, 1 H, ³J_{HH} = 7.7 Hz, *p*-N-Ar), 6.93 (m, 2 H, β -Py), 6.93 (m, 2 H, *m*-Ph), 6.95 (t, 1 H, ³J_{HH} = 7.7 Hz, *p*-Ph), 6.99 (d, 2 H, ³J_{HH} = 7.4 Hz, *o*-Ph), 7.42 (m, 1 H, γ -Py), 7.45 (m, 2 H, *p*-CH, PPh₂), 7.46 (m, 4 H, *m*-CH PPh₂), 7.99 $(dd, 4 H, {}^{3}J_{HP} = 10.7 Hz, {}^{3}J_{HH} = 8.0 Hz, o-CH, PPh_{2}), 8.50 (d, 2 H, {}^{3}J_{HH} = 5.0 Hz, \alpha-Py). {}^{13}C{}^{1}H} NMR (100.6 MHz, 25 °C, CD_{2}Cl_{2}): \delta$ -3.9 (d, ²*J*_{CP} = 34.2 Hz, CH₂SiMe₃), 1.7 (CH₂SiMe₃), 23.9 (Ar-CHMeMe), 24.2 (Ar-CHMeMe), 28.7 (Ar-CHMe₂), 76.4 (d, ¹*J*_{CP} = 54.8 Hz, P-CH=), 122.3 (β-CH Py), 122.8 (*m*-CH *N*-Ar), 123.4 (*p*-CH *N*-Ar), 123.4 (*p*-CH Ph), 127.1 (*m*-CH Ph), 128.4 (d, ³J_{CP} = 10.0 Hz, *m*-CH PPh₂), 129.3 (*o*-CH Ph), 129.4 (d, ⁴*J*_{CP} = 2.3 Hz, *p*-CH PPh₂), 133.7 (d, ²*J*_{CP} = 10.2 Hz, *o*-CH, PPh₂), 136.2 (γ-CH Py), 137.6 $(d, {}^{1}J_{CP} = 53.4 \text{ Hz}, ipso-C_q \text{ PPh}_2), 140.8 (d, {}^{3}J_{CP} = 17.3 \text{ Hz}, ipso-C_q \text{ Ph}), 144.3 (o-C_q N-Ar), 148.3 (ipso-C_q N-Ar), 151.5 (\alpha-CH Py), 140.8 (d, {}^{3}J_{CP} = 17.3 \text{ Hz}, ipso-C_q \text{ Ph}), 144.3 (o-C_q N-Ar), 148.3 (ipso-C_q N-Ar), 151.5 (\alpha-CH Py), 140.8 (d, {}^{3}J_{CP} = 17.3 \text{ Hz}, ipso-C_q \text{ Ph}), 144.3 (o-C_q N-Ar), 148.3 (ipso-C_q N-Ar), 151.5 (\alpha-CH Py), 140.8 (d, {}^{3}J_{CP} = 17.3 \text{ Hz}, ipso-C_q \text{ Ph}), 140.8 (d, {}^{3}J_{CP} = 17.3 \text{ Hz}, ipso-C_q \text{ Ph}), 144.3 (o-C_q N-Ar), 148.3 (ipso-C_q N-Ar), 151.5 (\alpha-CH Py), 140.8 (d, {}^{3}J_{CP} = 17.3 \text{ Hz}, ipso-C_q \text{ Ph}), 140.8 (d, {}^{3$ 175.0 (d, ²J_{CP} = 24.4 Hz, C=N). IR (nujol, cm⁻¹): 1606 (v C=C, Py), 1574 (v C=C arom.), 1238 (SiMe₃), 849, 820 (C-H arom, SiMe₃). Anal. Calcd. for C₄₁H₄₈N₂NiPSi: C, 71.72; H, 7.05; N, 4.08. Found: C, 71.50; H, 7.39; N, 4.13.

[Ni(CH₂SiMe₃)(L'c)(Py)], 3c: Starting from 0.089 g (0.230 mmol) of 1, and equimolar amounts of [HPy₂]⁺[OTf]⁻ (0.071 g) and Lc (0.120 g), the reaction with NaH (0.055 g, 2.3 mmol) conducted as described above, and evaporation of the THF solvent gave a yellow solid. The remaining NaOTf was removed by extraction with a 1:1 toluene/hexane mixture. The extract was evaporated to dryness and the residue was crystallized by slow diffusion of hexane into a CH₂Cl₂ solution at -25 °C. An oil precipitated out, which was decanted. Upon vacuum drying the oil solidified affording a yellow powder. Yield, 0.130 g (0.174 mmol), 76 %. ³¹P {¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 27.6 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ -0.92 (d, 2 H, ³J_{HP} = 7.2 Hz, CH₂SiMe₃), -0.66 (s, 9 H, CH₂SiMe₃), 0.46 (d, 6 H, ³J_{HH} = 6.6 Hz, ArCHMeMe), 1.11 (d, 6 H, ³J_{HH} = 6.5 Hz, CHMeMe), 3.68 (s, 6 H,-OMe), 3.93 (s, 1 H, P-CH=), 4.11 (m, 2 H, ArCHMe₂), 6.60 (d, 2 H, ³J_{HH} = 7.5 Hz, m-N-Ar), 6.69 (t, 1 H, ³J_{HH} = 7.6 Hz, p-N-Ar), 6.89 (m, 2 H, 3-CH P(Anis.)₂), 6.90 (m, 2 H, β-Py), 6.93 (d, 2 H, ³J_{HH} = 7.8 Hz, *o*-Ph), 6.95 (m, 2 H, *m*-Ph), 6.97 (m, 1 H, *p*-Ph), 7.07 (t, 2 H, ³J_{HH} = 7.6 Hz, 5-CH P(Anis.)₂), 7.37 (m, 1 H, γ-Py), 7.42 (t, 2 H, ³J_{HH} = 7.9 Hz, 4-CH P(Anis.)₂), 8.26 (m, 2 H, 6-CH P(Anis.)₂), 8.53 (d, 2 H, ³J_{HH} = 4.3 Hz, α-Py). ¹³C{¹H} NMR (100.6 MHz, 25 ^oC, CD₂Cl₂): δ -7.5 (CH₂SiMe₃), 1.7 (CH₂SiMe₃), 23.9 (Ar-CHMeMe), 24.3 (Ar-CHMeMe), 28.6 (Ar-CHMe₂), 55.4 (-OMe), 77.5 (d, ¹J_{CP} = 56.5 Hz, P-CH=), 111.1 (d, ³J_{CP} = 3.9 Hz, 3-CH P(Anis.)₂), 115.0 (d, ¹J_{CP} = 56.7 Hz, 1-C_q P(Anis.)₂), 120.4 (d, ³J_{CP} = 10.5 Hz, 5-CH P(Anis.)₂), 122.7 (*m*-CH *N*-Ar), 122.8 (*p*-CH *N*-Ar), 123.3 (β-CH Py), 126.6 (p-CH Ph), 126.9 (m-CH Ph), 129.2 (o-CH Ph), 130.1 (4-CH P(Anis.)₂), 135.6 (d, ²J_{CP} = 14.0 Hz, 6-CH P(Anis.)₂), 135.9 (γ-CH Py), 141.5 (d, ³J_{CP} = 18.1 Hz, *ipso-C*_q Ph), 144.5 (*o-C*_q N-Ar), 148.6 (*ipso-C*_q N-Ar), 151.6 (α-CH Py), 161.0 (2-C_q P(Anis.)₂), 173.0 (d, ²/_{CP} = 24.9 Hz, C=N). IR (nujol, cm⁻¹): 1601 (ν C=C, Py), 1576 (ν C=C arom.), 1252 (ν_{as} Ar-O-Me), 1236, (δ SiCH, SiMe₃), 849, 820 (γ C-H arom, SiMe₃). Anal. Calcd. for C₄₃H₅₃N₂NiO₂PSi: C, 69.08; H, 7.15; N, 3.75. Found: C, 69.37; H, 7.21; N, 3.49.

Nickel aryl derivatives 7a-c (X = Br) and 8a-c (X = Cl)

[Ni(C₆H₄-*p***-COCH₃)(Br)(La)], 7a:** Starting from 1.04 mmol of Ni(COD)₂ (0.287 g), and equimolar amounts of ligand La (5.5 mL of a 0.19 M solution in THF) in, and 4-bromoacetophenone (0.212 g), the general procedure gave the title product as off-yellow crystals in 74 % yield (0.505 g, 0.775 mmol). ³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 47.1 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ 0.84 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CH*Me*Me), 1.26 (dd, 6 H, ³J_{HP} = 15.1 Hz, ³J_{HH} = 7.0 Hz, P-CH*Me*Me), 1.38 (dd, 6 H, ³J_{HP} = 15.4 Hz, ³J_{HH} = 7.0 Hz, P-CHMeMe), 1.52 (d, 6 H, ³J_{HH} = 6.7 Hz, Ar-CHMeMe), 2.20 (d sept, 2 H, ²J_{HP} = 9.8 Hz, ³J_{HH} = 7.0 Hz, P-CHMe₂), 2.44 (s, 3 H, -COCH₃), 3.38 (d, 2 H, ²J_{HP} = 8.6 Hz, P-CH₂), 3.60 (sept, 2 H, ³J_{HH} = 7.0 Hz, Ar-CHMe₂), 7.01 (d, 2 H, ³J_{HH} = 7.5 Hz, *m*-N-Ar), 7.05 (d, 2 H, ³J_{HH} = 7.6 Hz, *m*-CH), 7.12 (t, 1 H, ³J_{HH} = 7.7 Hz, *p*-N-Ar), 7.18 (t, 2 H, ³J_{HH} = 7.6 Hz, *m*-Ph), 7.30 (t, 1 H, ³J_{HH} = 7.4 Hz, *p*-Ph), 7.40 (d, 2 H, ³J_{HH} = 7.6 Hz, *m*-CH, Ni-Ar), 7.60 (d, 2 H, ³J_{HH} = 7.5 Hz, *o*-CH, Ni-Ar). ¹³C{¹H} NMR (100.6

MHz, 25 °C, CD₂Cl₂): δ 17.1 (P-CH*Me*Me), 17.7 (P-CHMe*Me*), 23.4 (Ar-CH*Me*Me), 23.6 (d, ${}^{1}J_{CP}$ = 41.4 Hz, P-CHMe₂), 24.3 (s, Ar-CHMe*Me*), 26.4 (s, -COCH₃), 29.6 (s, Ar-CHMe₂), 38.4 (d, ${}^{1}J_{CP}$ = 17.1 Hz, P-CH₂), 123.6 (*m*-CH, *N*-Ar), 124.3 (*m*-CH, Ni-Ar), 127.0 (*p*-CH *N*-Ar), 128.5 (*m*-CH, Ph), 129.1 (*o*-CH, Ph), 131.1 (*p*-CH, Ph), 132.2 (*ipso*-C_q, *Ni*-Ar), 134.7 (*ipso*-C_q, Ph), 137.9 (*o*-CH, Ni-Ar), 139.4 (*o*-C_q, N-Ar), 144.9 (*ipso*-C_q, NAr), 156.2 (d, ${}^{2}J_{CP}$ = 41.3 Hz, *ipso*-C_q, NiAr), 177.7 (d, ${}^{2}J_{CP}$ = 5.2 Hz, *C*=N), 198.5 (-COMe). IR (nujol mull, cm⁻¹): 1664 (*ν* C=O), 1563 (*ν* \mathbb{C} C=N). Anal. Calcd for C₃₄H₄₅BrNNiOP: C, 62.51; H, 6.94; N, 2.14. Found: C, 62.37; H, 7.29; N, 2.03.

[Ni(C₆H₄-*p***-COCH₃)(Br)(Lb)], 7b**: Starting from 0.82 mmol of Ni(COD)₂ (0.225 g), and equimolar amounts of Lb ligand (4.3 mL of a 0.19 M solution in THF), and 4-bromoacetophenone (0.163 g), the general procedure gave the title product as off-yellow crystals in 76 % yield (0.450 g, 0.626 mmol). ³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 35.6 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ 0.61 (d, 6 H, ³J_{HH} = 6.7 Hz, Ar-CH*Me*Me), 1.53 (d, 6 H, ³J_{HH} = 6.6 Hz, Ar-CHMe*Me*), 2.37 (s, 3 H, -COCH₃), 3.57 (sept, 2 H, ³J_{HH} = 6.7 Hz, Ar-CH*Me*Me), 4.31 (d, 2 H, ²J_{HP} = 10.6 Hz, P-CH₂), 7.04 (d, 2 H, ³J_{HH} = 7.6 Hz, *m*-N-Ar), 7.05 (d, 2 H, ³J_{HH} = 8.1 Hz, *o*-Ph), 7.18 (m, 1 H, *p*-N-Ar), 7.19 (m, 2 H, *m*-CH, Ni-Ar), 7.20 (m, 2 H, *m*-Ph), 7.32 (m, 1 H, *p*-Ph), 7.35 (d, 2 H, ³J_{HH} = 7.8 Hz, *o*-CH, Ni-Ar), 7.47 (t, 4 H, ³J_{HH} = 7.3 Hz, *m*-CH, PPh₂), 7.55 (m, 2 H, *p*-CH, PPh₂), 7.61 (dd, 4 H, ³J_{HP} = 10.7 Hz, ³J_{HH} = 7.9 Hz, *o*-CH, PPh₂). ¹³C{¹H</sup>} NMR (100.6 MHz, 25 °C, CD₂Cl₂): δ 23.3 (Ar-CH*Me*Me), 24.7 (Ar-CHMe*Me*), 26.3 (-COCH₃), 29.4 (Ar-CHMe₂), 46.1 (d, ¹J_{CP} = 23.3 Hz, P-CH₂), 123.9 (*m*-CH, -NAr), 124.2 (*m*-CH, Ni-Ar), 127.3 (*p*-CH, N-Ar), 128.2 (*p*-C_q, Ni-Ar), 128.4 (d, ¹J_{CP} = 49.7 Hz, *ipso*-C_q, PPh₂), 138.0 (d, ³J_{CP} = 3.7 Hz, *o*-CH, Ni-Ar), 139.7 (*o*-C_q, N-Ar), 144.2 (*ipso*_C_q-NAr), 157.4 (d, ²J_{CP} = 41.3 Hz, *ipso*-C_q, NiAr), 175.5 (d, ²J_{CP} = 7.7 Hz, C=N), 198.6 (-COMe). IR (nujol mull, cm⁻¹): 1666 (*v* C=O), 1564 (*v* -C=N). Anal. Calcd for C₄₀H₄₁BrNNiOP: C, 66.60; H, 5.73; N, 1.94. Found: C, 66.50; H, 5.73; N, 1.99.

[Ni(C₆H₄-*p***-COCH₃)(Br)(Lc)], 7c:** Starting from 1.00 mmol of Ni(COD)₂ (0.275 g), and equimolar amounts of **Lc** ligand (0.520 g), and 4-bromoacetophenone (0.199 g), the general procedure gave the title product as off-yellow crystals in 69 % yield (0.537 g, 0.687 mmol).³¹P{¹H} NMR (161.9 MHz, 25 °C, 161.9 MHz, CD₂Cl₂): 26.7 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ 0.71 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CHMe*Me*), 1.64 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CH*Me*Me), 2.27 (s, 3 H, COCH₃), 3.61 (sept, 2 H, ³J_{HH} = 6.8 Hz, Ar-CHMe₂), 3.98 (s, 6 H, -0*Me*), 4.75 (d, 2 H, ²J_{HP} = 11.9 Hz, P-CH₂), 6.97 (m, 2 H, 5-CH, P(Anis.)₂), 6.97 (m, 2 H, *o*-CH, Ph), 6.99 (m, 2 H, *m*-CH, Ni-Ar), 7.03 (d, 2 H, ³J_{HH} = 7.7 Hz, *m*-N-Ar), 7.06 (m, 2 H, 3-CH, P(Anis.)₂), 7.13 (m, 2 H, *m*-Ph), 7.15 (m, 1 H, *p*-N-Ar), 7.19 (d, 2 H, ³J_{HH} = 8.1 Hz, *o*-CH, P(Anis.)₂). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C, 100.6 MHz): 23.1 (Ar-CHMe*Me*), 24.3 (Ar-CHMeMe), 26.1 (COCH₃), 29.1 (Ar-CHMe₂), 44.4 (d, ¹J_{CP} = 23.3 Hz, P-CH₂), 56.1 (-OCH₃), 111.5 (d, ³J_{CP} = 4.3 Hz, 3-CH, P(Anis.)₂), 115.1 (d, ¹J_{CP} = 53.7 Hz, 1-C_q P(Anis.)₂), 120.9 (d, ³J_{CP} = 12.1 Hz, 5-CH, P(Anis.)₂), 123.3 (*m*-CH, Ni-Ar), 123.6 (*m*-CH, *N*-Ar), 126.6 (*p*-CH, *N*-Ar), 128.1 (*m*-CH, Ph), 128.9 (*o*-CH, Ph), 130.7 (*p*-CH, Ph), 130.8 (*p*-C_q, Ni-Ar), 133.8 (4-CH, P(Anis.)₂), 135.0 (d, ³J_{CP} = 8.3 Hz, *ipso*-C_q, Ph), 136.2 (d, ²J_{CP} = 12.7 Hz, 6-C_q, P(Anis.)₂), 136.7 (d, ³J_{CP} = 9.7 Hz, C=N), 198.3 (C=O). IR (nujol mull, cm⁻¹): 1662 (*v* C=O), 1561 (*v* C=N).

[Ni(C₆H₄-*p***-COCH₃)(Cl)(La)], 8a:** Starting from 1.00 mmol of Ni(COD)₂ (0.275 g), and equimolar amounts of ligand La (5.6 mL of a 0.18 M solution in THF), and 4-chloroacetophenone (0.129 mL), the general procedure gave the title product as off-yellow crystals in 49 % yield (0.300 g, 0.493 mmol).³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 46.4 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ 0.89 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CH*Me*Me), 1.24 (dd, 6 H, ³J_{HP} = 16.6 Hz, ³J_{HH} = 7.4 Hz, P-CH*Me*Me), 1.40 (dd, 6 H, ³J_{HP} = 15.2 Hz, ³J_{HH} = 7.0 Hz, P-CHM*eMe*), 1.52 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CHM*eMe*), 2.19 (d sept, 2 H, ²J_{HP} = 9.4 Hz, ³J_{HH} = 6.7 Hz, P-CHMe₂), 2.45 (s, 3 H, -COCH₃), 3.35 (d, 2 H, ²J_{HP} = 8.9 Hz, P-CH₂), 3.52 (sept, 2 H, ³J_{HH} = 6.8 Hz, Ar-CHMe₂), 6.99 (d, 2 H, ³J_{HH} = 7.6 Hz, *m*-N-Ar), 7.04 (d, 2 H, ³J_{HH} = 7.8 Hz, *o*-Ph), 7.13 (t, 1 H, ³J_{HH} = 7.8 Hz, *p*-N-Ar), 7.18 (t, 2 H, ³J_{HH} = 7.6 Hz, *m*-Ph), 7.30 (t, 1 H, ³J_{HH} = 7.5 Hz, *p*-Ph), 7.42 (d, 2 H, ³J_{HH} = 8.0 Hz, *m*-CH, Ni-Ar), 7.59 (d, 2 H, ³J_{HH} = 7.7 Hz, *o*-CH, NiAr). ¹³C{¹H} NMR (100.6 MHz, 25 °C, CD₂Cl₂): δ 17.1 (P-CH*Me*(P), 17.7 (P-CHM*eM*(P), 23.2 (Ar-CH*Me*(P), 23.4 (d, ¹J_{CP} = 27.8 Hz, P-CHMe₂), 24.3 (Ar-CHM*eM*), 26.4 (-COCH₃), 29.5 (Ar-CHMe₂), 38.1 (d, ¹J_{CP} = 18.0 Hz, P-CH₂), 123.4 (*m*-CH, *N*-Ar), 124.5 (*m*-CH, Ni-Ar), 126.8 (*p*-CH, *N*-Ar), 128.4 (*m*-CH, Ph), 128.7 (*o*-CH, Ph), 131.0 (*p*-CH, Ph), 132.3 (*p*-C_q, NiAr), 134.7 (d, ³J_{CP} = 8.0 Hz, *ipso*-C_q, Ph), 137.7 (*o*-CH, NiAr), 139.6 (*o*-C_q, NAr), 144.1 (*ipso*-C_q N-Ar), 157.4 (d, ²J_{CP} = 45.4 Hz, *ipso*-C_q, NiAr), 177.9 (d, ²J_{CP} = 8.0 Hz, *C*=N), 198.5 (-COMe). IR (nujol mull, cm⁻¹): 1659 (ν C=O), 1561 (ν C=N).Anal. Calcd for C₃₄H₄₅ClNNiOP: C, 67.07; H, 7.45; N, 2.30. Found: C, 67.36; H, 7.36; N, 2.38.

[Ni(C₆H₄-*p***-COCH₃)(Cl)(Lb)], 8b**: Starting from 0.8 mmol of Ni(COD)₂ (0.226 g), and equimolar amounts of Lb ligand (4.2 mL of a 0.19 M solution in THF), and 4-chloroacetophenone (107 µL), the general procedure gave the title product as off-yellow crystals in 64 % yield (0.345 g, 0.510 mmol). ³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): δ 33.9 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ 0.66 (d, 6 H, ³J_{HH} = 6.7 Hz, Ar-CH*Me*Me), 1.51 (d, 6 H, ³J_{HH} = 6.7 Hz, Ar-CHMeMe), 2.37 (s, 3 H, -COCH₃), 3.51 (sept, 2 H, ³J_{HH} = 6.7 Hz, Ar-CHMe₂), 4.27 (d, 2 H, ²J_{HP} = 10.5 Hz, P-CH₂), 7.04 (d, 2 H, ³J_{HH} = 7.6 Hz, *m*-N-Ar), 7.05 (d, 2 H, ³J_{HH} = 8.4 Hz, *o*-Ph), 7.17 (t, 1 H, ³J_{HH} = 7.4 Hz, *p*-N-Ar), 7.19 (t, 2 H, ³J_{HH} = 8.1 Hz, *m*-Ph), 7.21 (d, 2 H, ³J_{HH} = 8.3 Hz, *m*-CH, Ni-Ar), 7.32 (t, 1 H, ³J_{HH} = 7.2 Hz, *p*-Ph), 7.34 (d, 2 H, ³J_{HH} = 8.2 Hz, *o*-CH, NiAr), 7.47 (t, 4 H, ³J_{HH} = 7.7 Hz, *m*-Ph₂), 7.56 (t, 2 H, ³J_{HH} = 7.6 Hz, *p*-Ph₂), 7.62 (dd, 4 H, ³J_{HH} = 8.1 Hz, *o*-PPh₂). ¹³C{¹H} NMR (100.6 MHz, 25 °C, CD₂Cl₂): δ 23.1 (Ar-CH*Me*Me), 24.7 (Ar-CHM*eMe*), 26.3 (-COCH₃), 29.4 (Ar-CHMe₂), 46.1 (d, ¹J_{CP} = 24.3 Hz, *P*-CH₂), 123.7 (*m*-CH, *N*-Ar), 124.4 (*m*-CH, Ni-Ar), 127.2 (*p*-CH, *N*-Ar), 128.5 (*p*-C_q, Ni-Ar), 128.5 (d, ¹J_{CP} = 50.4 Hz, *ipso*-C_q, PPh₂), 128.6 (*m*-CH, Ph), 129.2 (*o*-Ph), 129.3 (d, ³J_{CP} = 50.4 Hz,

m-CH), 131.5 (*p*-CH, Ph), 131.8 (d, ${}^{4}J_{CP}$ = 2.6 Hz, *p*-CH, PPh₂), 132.9 (d, ${}^{2}J_{CP}$ = 10.3 Hz, *o*-CH, PPh₂), 134.6 (d, ${}^{3}J_{CP}$ = 6.3 Hz, *ipso*-C_q, Ph), 137.6 (d, ${}^{3}J_{CP}$ = 3.4 Hz, *o*-CH, Ni-Ar), 139.8 (*o*-C_q -NAr), 143.4 (*ipso*-C_q, *N*-Ar), 158.0 (d, ${}^{2}J_{CP}$ = 42.2 Hz, *ipso*-C_q, Ni-Ar), 175.4 (d, ${}^{2}J_{CP}$ = 7.7 Hz, *C*=N), 198.6 (-COMe). IR (nujol mull, cm⁻¹): 1663 (ν C=O), 1562 (ν C=N).Anal. Calcd for C₄₀H₄₁ClNNiOP: C, 70.98; H, 6.11; N, 2.07. Found: C, 70.82; H, 6.12; N, 1.73.

[Ni(C₆H₄-*p***-COCH₃)(Cl)(Lc)], 8c:** Starting from 1.00 mmol of Ni(COD)₂ (0.275 g), and equimolar amounts of **Lc** ligand (0.523 g), and 4-chloroacetophenone (0.129 mL), the general procedure gave the title product as golden crystals in 46 % yield (0.340 g, 0.461 mmol). ³¹P{¹H} NMR (161.9 MHz, 25 °C, CD₂Cl₂): 25.6 (s). ¹H NMR (400 MHz, 25 °C, CD₂Cl₂): δ 0.76 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CHMeMe), 1.64 (d, 6 H, ³J_{HH} = 6.8 Hz, Ar-CHMeMe), 2.28 (s, 3 H, COCH₃), 3.53 (sept, 2 H, ³J_{HH} = 6.8 Hz, Ar-CHMe₂), 3.99 (s, 6 H, -OMe), 4.34 (d, 2 H, ²J_{HP} = 11.9 Hz, P-CH₂), 6.97 (d, 2 H, ³J_{HH} = 7.6 Hz, *o*-Ph), 7.00 (m, 2 H, 5-CH, P(Anis.)₂), 7.02 (d, 2 H, ³J_{HH} = 7.6 Hz, *m*-CH, Ni-Ar), 7.03 (m, 2 H, *m*-CH, *N*-Ar), 7.05 (m, 2 H, 3-CH, P(Anis.)₂), 7.13 (m, 2 H, *m*-Ph), 7.15 (m, 1 H, *p*-CH, *N*-Ar), 7.20 (d, 2 H, ³J_{HH} = 8.1 Hz, *o*-CH, NiAr), 7.25 (t, 1 H, ³J_{HH} = 7.5 Hz, *p*-Ph), 7.55 (t, 2 H, ³J_{HH} = 7.8 Hz, 4-CH, P(Anis.)₂), 7.83 (dd, 2 H, ²J_{HP} = 13.8 Hz, ³J_{HH} = 7.5 Hz, 6-CH, P(Anis.)₂). ¹³C{¹H} NMR (100.6 MHz, 25 °C, CD₂Cl₂): δ 23.1 (Ar-CHMeMe), 24.5 (s, Ar-CHMeMe), 26.2 (COCH₃), 29.1 (Ar-CHMe₂), 44.3 (d, ¹J_{CP} = 28.9 Hz, P-CH₂), 56.1 (OCH₃), 111.5 (s, 3-CH, P(Anis.)₂), 115.2 (d, ¹J_{CP} = 53.7 Hz, *ipso*-C_q, P(Anis.)₂), 121.0 (d, ³J_{CP} = 11.5 Hz, 5-CH, P(Anis.)₂), 123.3 (*m*-CH, NiAr), 123.8 (*m*-CH, *N*-Ar), 126.6 (*p*-CH, *N*-Ar), 128.2 (*m*-CH, Ph), 128.7 (*o*-CH, Ph), 130.7 (*p*-CH, Ph), 131.2 (s, *p*-C_q, Ni-Ar), 133.9 (s, 4-CH, P(Anis.)₂), 135.2 (d, ³J_{CP} = 7.5 Hz, *ipso*-C_q, P(Anis.)₂), 160.8 (d, ²J_{CP} = 43.5 Hz, *ipso*-C_q, Ni-Ar), 136.5 (d, ²J_{CP} = 11.2 Hz, 6-CH, P(Anis.)₂), 139.5 (*o*-C_q, N-Ar), 143.9 (*ipso*-C_q, N-Ar), 160.1 (2-C_q, P(Anis.)₂), 160.8 (d, ²J_{CP} = 43.5 Hz, *ipso*-C_q, Ni-Ar), 177.3 (d, ²J_{CP} = 8.4 Hz, C=N), 198.5 (C=O). IR (nujol mull, cm⁻¹): 1666 (ν C=O), 1568 (ν IC=N).Anal. Calcd for C₄₂H₄₅CINNiO₃P: C, 68.45; H, 6.16; N, 1.90. Found: C,

Spectroscopic data for mixtures of palladium aryl complexes.

10a/13a: ³¹P{¹H} NMR (THF, 161.9 MHz, 25 °C): 47.1 (**10a**), 56.9 (**13a**).

10b/13b: ${}^{31}P{}^{1H}$ NMR (THF, 161.9 MHz, 25 °C): 30.5 (**10b**), 38.3 (**13b**). ${}^{31}P$ NMR (C₆D₆, 25 °C, 161.9 MHz): 29.0 (**10b**), 36.4 (**13b**). ${}^{1}H$ NMR (C₆D₆, 25 °C, 161.9 MHz): 29.0 (**10b**), 36.4 (**13b**). ${}^{1}H$ NMR (C₆D₆, 25 °C, 400 MHz): Signals assigned to **10b**: \Box 0.68 (d, 6 H, ${}^{3}J_{HH}$ = 6.9 Hz, ArCHMe*Me*), 1.78 (d, 6 H, ${}^{3}J_{HH}$ = 6.7 Hz, ArCH*Me*Me), 2.11 (s, 3 H, COCH₃), 3.26 (sept, 2 H, ${}^{3}J_{HH}$ = 6.8 Hz, CHMe₂), 3.82 (d, 2 H, ${}^{2}J_{HP}$ = 11.2 Hz, P-CH₂); Signals assigned to **13b**: δ 0.39 (s, 9 H, CH₂Si*Me*₃), 0.64 (d, 6 H, ${}^{3}J_{HH}$ = 6.7 Hz, ArCH*Me*Me), 1.59 (d, 2 H, ${}^{3}J_{HP}$ = 6.0 Hz, CH₂SiMe₃), 1.71 (d, 6 H, ${}^{3}J_{HH}$ = 6.7 Hz, CHMeMe), 3.71 (d, 2 H, ${}^{2}J_{HP}$ = 10.9 Hz, P-CH₂).

10c/13c: ³¹P{¹H} NMR (THF, 161.9 MHz, 25 °C): 25.2 (**10c**), 30.3 (**13c**). ³¹P NMR (CD₂Cl₂, 25 °C, 161.9 MHz): 25.9 (**10c**), 30.9 (**13c**). ¹H NMR (CD₂Cl₂, 25 °C, 400 MHz): Signals assigned to **10c** (a complete signal list is given below): δ 0.75 (d, 6 H, ³J_{HH} = 6.8 Hz, ArCH*Me*Me), 1.59 (d, 6 H, ³J_{HH} = 6.8 Hz, CHMe*Me*), 2.35 (s, 3 H, COC*H*₃), 3.13 (sept, 2 H, ³J_{HH} = 6.8 Hnalz, C*H*Me₂), 3.93 (s, 6 H, O*Me*), 4.61 (d, 2 H, ²J_{HP} = 12.5 Hz, P-C*H*₂). Signals assigned to **13c**: δ -0.25 (s, 9 H, CH₂Si*Me*₃), 0.69 (d, 2 H, ³J_{HH} = 6.7 Hz, C*H*MeMe), 3.89 (s, 6 H, O*Me*), 4.47 (d, 2 H, ²J_{HP} = 12.1 Hz, P-C*H*₂).

Isolation of [Pd(C₆H₄-p-COCH₃)(Br)(Lc)], 10c: A solution of Lc (0.114 g, 0.217 mmol) in dry THF (2 mL) was dropwise added over a cooled solution of precursor complex 2 (0.085 g, 0.217 mmol) in dry THF (3 mL). After the addition, the reaction mixture was a. stirred for 1 h at the room temperature. The dark orange mixture was transferred to a PTFE-valve glass ampoule charged with a magnetic bar, and 4-acetylphenyltrifluoromethanesulfonare (0.041 ml, 0.217 mmol) was added. The mixture was stirred at 60 °C for 1 h, after which time it was transferred to the glove box, where the contents were poured on a scintillation vial charged with solid LiBr (0.037 g, 0.435 mmol, 2 equiv.) and stirred overnight. The reaction mixture was filtered and the solvent was evaporated under reduced pressure. The residual oil was washed with 20 ml of n-hexane, then with 20 mL of Et₂O. The solid residue was recrystallized by slow diffusion of hexane in a concentrated solution of CH₂Cl₂ at – 25 °C. Yield, 64 % (0.115 g, 0.138 mmol). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C, 161.9 MHz): 25.8 (s). ¹H NMR (CD₂Cl₂, 25 °C, 400 MHz): δ 0.75 (d, 6 H, ³J_{HH} = 6.9 Hz, ArCH*Me*Me), 1.59 (d, 6 H, ³J_{HH} = 6.9 Hz, CHMe*Me*), 2.34 (s, 3 H, COCH₃), 3.13 (sept, 2 H, ³J_{HH} = 6.9 Hz, CHMe₂), 3.92 (s, 6 H, OMe), 4.61 (d, 2 H, ²J_{HP} = 12.7 Hz, P-CH₂), 6.99 (t, 2 H, ³J_{HH} = 7.9 Hz, 5-CH P(Anis.)₂), 7.06 (m, 2 H, 3-CH, P(Anis.)₂), 7.07 (d, 2 H, ³J_{HH} = 6.9 Hz, o-Ph), 7.08 (m, 2 H, m-N-Ar), 7.13 (m, 2 H, m-Ph), 7.15 (d, 2 H, ³J_{HH} = 8.7 Hz, m-CH, NiAr), 7.19 (m, 1 H, *p*-N-Ar), 7.20 (d, 2 H, ³*J*_{HH} = 8.1 Hz, *o*-CH, Ni-Ar), 7.30 (t, 1 H, ³*J*_{HH} = 7.6 Hz, *p*-Ph), 7.57 (t, 2 H, ³*J*_{HH} = 7.6 Hz, 4-CH, P(Anis.)₂), 7.60 (m, 2 H, 6-CH, P(Anis)₂). ¹³C{¹H} NMR (CD₂Cl₂, 25 °C, 100.6 MHz): 23.2 (ArCHMeMe), 24.5 (ArCHMeMe), 26.3 (COCH₃), 28.9 (ArCHMe₂), 44.6 (d, ¹J_{CP} = 33.1 Hz, P-CH₂), 56.2 (s, OCH₃), 115.2 (d, ¹J_{CP} = 53.6 Hz, *ipso-C*_q, P(Anis.)₂), 116.9 (d, ³J_{CP} = 4.3 Hz, 3-CH, P(Anis.)₂), 121.3 (d, ³J_{CP} = 12.9 Hz, 5-CH, P(Anis.)₂), 123.6 (*m*-CH, *N*-Ar), 125.3 (*m*-CH, Ni-Ar), 126.6 (*p*-CH, *N*-Ar), 128.4 (*m*-CH, Ph), 128.8 (*o*-CH, Ph), 130.9 (*p*-CH, Ph), 132.1 (*p*-C_q, Ni-Ar), 134.3 (4-CH, P(Anis.)₂), 135.1 (d, ³J_{CP} = 9.1 Hz, ipso-C_q, Ph), 136.5 (o-CH, Ni-Ar), 136.7 (d, ²J_{CP} = 6.0 Hz, 6-CH, P(Anis.)₂), 138.8 (o-C_q N-Ar), 144.4 (ipso-C_q N-Ar), 157.2 (d, ²J_{CP} = 2.5 Hz, *ipso-C*_q, Ni-Ar), 160.6 (2-C_q, P(Anis.)₂), 177.3 (d, ²J_{CP} = 7.8 Hz, C=N), 198.7 (s, C=O). Anal. Calcd. for C₄₂H₄₅BrNO₃PPdS: C, 60.84; H, 5.47; N, 1.69. Found: C, 60.87; H, 5.59; N, 1.70.

Deprotonation of complex 7a with NaH or NaOH: Syntheses of [Ni(p-C₆H₄COMe)(OH)(L'a)]⁻Na⁺ 16: In the globe box, NaH (0.037 g, 1.53 mmol) was placed in a 7 mL scintillation vial, with a small magnetic sitting bar. Then, a solution of complex 7a (0.100 g, 0.153 mmol) in 4.5 mL of THF was added dropwise over the NaH reagent at r.t. The reaction mixture was stirred for 1 h, during which time its colour changed from yellow to dark orange. Once the prescribed time was over, the mixture was

filtered through a PTFE 0.45 µM HPLC syringe filter and dried under reduced pressure, to obtain a dark orange oily residue. This was washed with *n*-hexane (3 mL), and dried under vacuum giving a fine yellow powder. The latter was purified by subsequent crystallization by slow diffusion of a hexane layer on a THF solution in the box freezer (-25 °C). The compound (16) was obtained as clear orange crystals in 33% yield (0.030 g, 0.048 mmol). X-ray quality crystals were obtained by slow diffusion of hexane on a THF/Et₂O mixture of 16. The same product 16 was obtained in 97 % yield (0.091 g, 0.15 mmol) using finely grounded NaOH (0.061 g, 1.53 mmol) instead of NaH, and following exactly the same protocol. In this case, the colour of the reaction mixture remained clear orange, no darkening was observed as with NaH. ³¹P{¹H} NMR (161.9 MHz, 25^oC, THFd₈): δ 47.7 (s). ¹H NMR (400 MHz, 25^oC, THF-d₈): δ -2.79 (s, 1 H, -OH), 0.96 (d, 6 H, ³J_{HH} = 7.0 Hz, ArCHMeMe), 1.11 (dd, 6 H, ³J_{HP} = 15.1 Hz, ³J_{HH} = 7.3 Hz, P-CH*Me*Me), 1.29 (dd, 6 H, ³J_{HP} = 13.3 Hz, ³J_{HH} = 7.0 Hz, P-CHMe*Me*), 1.55 (d, 6 H, ³J_{HH} = 6.8 Hz, ArCHMeMe), 1.82 (d sept, 2 H, ²J_{HP} = 9.2 Hz, ³J_{HH} = 6.9 Hz, P-CHMe₂), 2.33 (s, 3 H, -COCH₃), 3.03 (d, 1 H, ²J_{HP} = 1.7 Hz, P-CH), 3.86 (sept, 2 H, ³J_{HH} = 7.2 Hz, CHMe₂), 6.73 (m, 2 H, *m*-*N*-Ar), 6.75 (m, 1 H, *p*-*N*-Ar), 6.87 (m, 2 H, *m*-Ph), 6.87 (m, 1 H, *p*-Ph), 7.02 (m, 2 H, o-Ph), 7.31 (d, 2 H, ³J_{HH} = 8.1 Hz, m-Ni-Ar), 7.88 (dd, 2 H, ⁴J_{HP} = 1.1 Hz, ³J_{HH} = 8.1 Hz, o-Ni-Ar). ¹³C{¹H} NMR (100.6 MHz, 25^oC, THF-d₈): δ 17.7 (P-CHMeMe), 18.5 (P-CHMeMe), 23.4 (ArCHMeMe), 23.8 (d, ¹J_{CP} = 30.3 Hz, PCHMe₂), 25.8 (ArCHMeMe), 25.8 (-COCH₃), 28.8 (ArCHMe₂), 67.9 (hidden under the solvent residual signal, P-CH), 122.7 (m-CH, N-Ar), 123.2 (p-CH, N-Ar), 123.7 (m-CH, Ni-Ar), 126.5 (p-CH, Ph), 126.8 (m-CH, Ph), 129.3 (o-CH, Ph), 131.8 (p-C_q, Ni-Ar), 139.1 (o-CH, NiAr), 142.7 (d, ³J_{CP} = 16.2 Hz, *ipso-C*_q, Ph), 147.2 (*o-C*_q, N-Ar), 148.3 (*ipso-C*_q N-Ar), 175.8 (d, ²J_{CP} = 22.5 Hz, *=C*-N), 182.4 (d, ²J_{CP} = 43.0 Hz, ipso-C_a, Ni-Ar), 197.2 (-COMe). IR (nujol mull, cm⁻¹): 3584 (sh, w, v(O-H)), 3422 (br, st, v(O-H)), 3053 (sh, w, v(C-H) arom.), 1669, 1657 (v(C=O, vC=C). Anal. Calcd for C₃₄H₄₅NNaNiO₂P: C, 66.68; H, 7.41; N, 2.29. Found: C, 66.93; H, 7.68; N, 1.96.

X-Ray structure analysis of complexes 3b, 4c, 6b, 7b and 16

Crystal and refinement data for these structures are shown on Table S1. Crystals suitable for X-ray diffraction analysis were coated with dry perfluoropolyether, mounted on glass fibers, and fixed in a cold nitrogen stream to the goniometer head. Data collections were performed on a Bruker-Nonius X8 Apex-II CCD diffractometer, using graphite monochromatized Mo radiation (λ (Mo K α) = 0.71073 Å) and fine-sliced ω and φ scans (scan widths 0.30° to 0.50°).⁴ The data were reduced (*SAINT*) and corrected for absorption effects by the multiscan method (SADABS).⁵ The structures were solved by direct methods (SIR2002, SHELXS) and refined against all F² data by full-matrix least-squares techniques (SHELXL-2018/3) minimizing w[F₀²- $F_c^{2]2.6}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were included in calculated positions and allowed to ride on their carrier atoms with the isotropic temperature factors U_{iso} fixed at 1.2 times (1.5 times for methyl groups) of the U_{eq} values of the respective carrier atoms. In the crystalline structure of salt 6b the fluorine atoms of the anion appear disordered, so these fluorine atoms were modeled in two sets of sites. At the end of the refinement the occupancy coefficients were set at 0.55 and 0.45. Moreover, a dichloromethane molecule as a crystallization solvent appears also disordered and was modeled in two sites with occupancy coefficients set at 0.58 and 0.42. In the crystalline structure of 16, both ligands of tetrahydrofuran and diethyl ether appear disordered, so both were modeled in two sites with occupancy coefficients set at 0.68:0.32 and 0.52:0.48 respectively. A search for solvent accessible voids in the crystal structures 4c and 6b using PLATON,⁷ showed some small volumes of potential solvents less than 187 Å³ and 187 Å³ respectively, impossible to model even with the most severe restraints. The corresponding CIF data represent SQUEEZE⁸ treated structures with the solvent molecules handling as a diffuse contribution to the overall scattering, without specific atom position and excluded from the structural model. The SQUEEZE results were appended to the CIF. The modeling of the observed disorders described above required some geometric restraints (DFIX instruction), the ADP restraint SIMU and the rigid bond restraint DELU were used in order to obtain more reasonable geometric and ADP values of the disordered atoms. It was also useful to restraint the anisotropic U-values of these atoms to behave more isotropically (ISOR instruction). A summary of cell parameters, data collection, structures solution, and the refinement of crystal structures are provided below (Table 1). The corresponding crystallographic data were deposited with the Cambridge Crystallographic Data Centre as supplementary publications. CCDC 1944621 (3b), 1944622 (4c), 1944623 (6b), 1944624 (7b) and 1944625 (16). The data can be obtained free of charge via: https://www.ccdc.cam.ac.uk/structures/

Table S1. Crystal data and re	finement details for	r complexes 3b, 4c,	6b, 7b and 16
-------------------------------	----------------------	---------------------	---------------

	3b	4c	6b	7b	16
Empirical formula	C41H49N2NiPSi	C42H60NO2PPdSi2	$C_{42}H_{50}F_3N_2NiO_3PSSi\cdot$	C ₄₀ H ₄₁ BrNNiOP	C ₈₄ H ₁₂₆ N ₂ Na ₂ Ni ₂ O ₈ P ₂
Formula weight	697 50	840.46	$\cdot CH_2Cl_2$	721 22	1517.2
Tomporaturo (K)	102(2)	102/2)	102(2)	102/2)	252(2)
	195(2)	195(2)	195(2) Triolinia	195(2)	ZJJ(Z) Trialinia
Crystal system				Nonoclinic	I FICIINIC
Space group Unit cell	P2 ₁ /n	P2 ₁ /n	P1	P21	P1
dimensions:					
a (Å)	12.7840(5)	12.8081(15)	10.8549(5)	9.9701(2)	11.604(6)
b (Å)	18.6105(8)	22.863(3)	12.2040(6)	14.6823(3)	12.092(7)
c (Å)	16.2525(6)	14.9029(18)	18.5076(9)	12.4003(3)	18.006(10)
α (deg)	90	90	96.275(2)	90	82.74(3)
β (deg)	103.625(2)	98.384(3)	94.927(2)	108.9940(10)	75.53(2)
γ (deg)	90	90	94.771(2)	90	64.70(3)
Volume (Å ³)	3757.9(3)	4317,4(9)	2417.4(2)	1716.37(7)	2211(2)
7	4	4	2 127.1(2)	2	1
Density	-	-	2	2	-
(Mg·m ⁻³ , calcd.)	1.215	1.238	1.267	1.396	1.139
Absorption					
coeff (mm ⁻¹)	0.621	0.555	0.662	1.808	0.522
F(000)	1464	1696	964	748	816
Crystal size, mm	0.30 x 0.25 x 0.20	0.20 x 0.1 x 0.05	0.50 x 0.40 x 0.15	0.25 x 0.20 x 0.18	0.20 x 0.15 x 0.10
0	2 4 2 2 4 2 5 2 4 0	1.643 to	1.112 to	2.160 to	1.863 to
O range (deg)	2.133 to 25.248	25.250	25.248	25.244	25.249
	-15 ≤ h ≤ 10,	-15 ≤ h ≤ 15,	-13 ≤ h ≤ 13,	-8 ≤ h ≤ 11	-13 ≤ h ≤ 13
Index ranges	-22 ≤ k ≤ 22,	$27 \le k \le 27$,	-14 ≤ k ≤ 14	-17 ≤ k ≤ 14	-14 ≤ k ≤ 14
	-19 ≤ l ≤ 19	-8≤l≤17	-22 ≤ ≤ 22	-14 ≤ l ≤ 14	-21 ≤ I ≤ 21
Reflections collected	66822	62440	49159	24230	31181
Independent reflns. [R(int)]	10664[0.0259]	12943 [0.0787]	14773 [0.0276]	8272 [0.0191]	13268 [0.0396]
Completeness to $\theta = 25.242^{\circ}$	99.0%	98.6%	100%	99.7 %	99.0 %
	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
Absorption	from	from	from	from	from
correction	equivalents	equivalents	equivalents	equivalents	equivalents
Max. and min. transmission	0.7461, 0.6809	0.7461, 0.4598	0.7461, 0.6607	0.7461, 0.6436	0.7461, 0.7002
Data / restraints / parameters	10664 / 0 / 422	12943 / 0 / 454	14773 / 147 / 577	8272 / 1 / 412	13268 / 473 / 559
Goodness-of-fit on F ²	1.021	1.086	1.057	1.010	0.979
Final R indices	R1 = 0.0327.	R1 = 0.0951.	R1 = 0.0426.	R1 = 0.0236.	R1 = 0.0512.
[I>2σ(I)]	wR2 = 0.0796	wR2 = 0.2490	wR2 = 0.1171	wR2 = 0.0549	wR2 = 0.1307
	R1 = 0.0463,	R1 = 0.1306,	R1 = 0.0591,	R1 = 0.0269,	R1 = 0.1043,
k indices (all data)	wR2 = 0.0869	wR2 = 0.2801	wR2 = 0.1268	wR2 = 0.0560	wR2 = 0.1564
Largest diff. peak and hole (e∙Å⁻³)	0.321, -0.205	3.127, -3.406	0.684, -0.582	0.386, -0.193	0.528, -0.417

REFERENCES

1) E. Carmona, F. González, M. L. Poveda, J. L. Atwood and R. D. Rogers, *J. Chem. Soc., Dalton Trans.*, 1981, 777-782.

2) Y. Pan and G. B. Young, J. Organomet. Chem., 1999, 577, 257-264

3) M. M. Colqhoun, J. Holton, D. J. Thompson and M. V. Twiggs, *New Pathways for Organic Synthesis*. *Practical Applications of Transition Metals.*, Plenum Press, New York, 1984.

4) Bruker APEX2, Bruker AXS, Inc., Madison, WI, 2007

5) Bruker Advanced X-ray solutions. SAINT and SADABS programs, Bruker AXS Inc. Madison, WI., 2004

6) M. C. Burla, M. Camalli, B. Carozzini, L. Cascarano, C. Giacovazzo, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 2003, **36**, 1103-1104.

7) A. L. Spek, J. Appl. Crystallogr., 2003, **36**, 7-13.

8) P. van der Sluis and A. L. Spek, Acta Cryst. Sect. A., 1990, 46, 194-201