Supplementary Information

Highly dispersed Co nanoparticles decorated on N-doped defective carbon nano-

framework for hybrid Na-Air battery

Jingyi Zhu^{a#}, Tao Qu^{a, b#}, Fengmei Su^a, Yuqi Wu^a, Yao Kang^{c,*}, Kunfeng Chen^d,

YaochunYao^a, Wenhui Ma^a, Bing Yang^a, Yongnian Dai^a, Feng Liang^{a,b,*}, Dongfeng Xue^d

^a Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

^b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,

Kunming University of Science and Technology, Kunming 650093, China

^c Institute of Applied Physics and Materials Engineering, University of Macau,
 Avenida da Universidade, Taipa, Macau, China

^d State Key Laboratory of Rare earth Resources Utilization, Chinese Academy of Science, Changchun 130022, China

(#The contributions of Jingyi Zhu and Tao Qu are equal and are the first authors.)

Catalysts	Electrolyte	Onset	Half-wave	J at 1.6 V	Ref.
		Potential	potential	(mA cm ⁻²)	
		(V)	(V)		
BNPC-1100	0.1 M KOH	0.894	0.793	4.7	[1]
Co@N-CNTF-2	0.1 M KOH	0.91	0.81	10	[2]
CoZn-NC-700	0.1 M KOH	0.97	0.84	6.0	[3]
MnO@Co/N-C	0.1 M KOH	0.88	0.83	2.4	[4]
Co-CoP-HNC	0.1 M KOH	0.94	0.83	140	[5]
Co-CoO-C	0.1 M KOH	0.90	0.82	4.0	[6]
Co-N-C-0	0.1 M KOH	0.85	0.81	1.5	Present
					work
Co-N-C-0.2	0.1 M KOH	0.87	0.80	2.5	Present
					work
Co-N-C-0.5	0.1 M KOH	0.92	0.82	4.4	Present
					work

Table S1. Performance of bifunctional catalysts derived from Co-MOF for ORR and OER.

Catalysts	Pyridinc N (at %)	Pyrrolic N (at %)	CoN _x (at %)
Co-N-C-0	0.13	0.09	0.11
Co-N-C-0.2	0.08	0.17	0.13
Co-N-C-0.5	0.14	0.13	0.30

Table S2. The atomic percentage of fitted peaks of N 1s in Co-N-C catalysts

Catalysts	Co ³⁺ (at %)	Co ²⁺ (at %)	Co ⁰ (at %)
Co-N-C-0	0.06	0.06	0.01
Co-N-C-0.2	0.07	0.05	0.01
Co-N-C-0.5	0.07	0.02	0.01

Table S3. Atomic ratio of Co³⁺, Co²⁺, and Co⁰ in Co-N-C catalysts calculated by XPS

Catalysts	Discharge	Charge	Voltage	Current densities	Roundtrip	Ref.
	voltage	voltage	gap		efficiency	
	(V)	(V)	(V)		(%)	
Mn ₃ O ₄ /C	2.60	3.51	0.91	1 mA·cm ⁻²	74.07	[7]
$\operatorname{Co}_3(\operatorname{PO}_4)_2$	2.82	3.41	0.59	0.01 mA·cm ⁻²	82.70	[8]
dp-	2.75	3.14	0.39	0.13 mA·cm ⁻²	87.58	[9]
MnCo ₂ O ₄						
/N-rGO						
Pt/C	2.85	3.38	0.53	$0.025 \text{ mA} \cdot \text{cm}^{-2}$	84.32	[10]
Carbon	2.6	3.59	0.99	$0.025 \text{ mA} \cdot \text{cm}^{-2}$	72.42	[10]
paper						
Carambol	2.81	3.45	0.64	0.01 mA·cm ⁻²	81.45	[11]
a-						
shaped						
VO ₂						
Pt/C	2.94	3.55	0.61	0.01 mA·cm ⁻²	82.82	[11]
Pt/C	2.69	3.20	0.51	0.1 mA·cm ⁻²	84.06	Present
						work
Co-N-C-0	2.60	3.17	0.57	0.1 mA·cm ⁻²	82.02	Present
						work

Table S4. Discharge–charge performance of hybrid sodium-air batteries with different catalysts

Co-N-C-	2.79	3.12	0.33	$0.1 \text{ mA} \cdot \text{cm}^{-2}$	89.42	Present
0.2						work
Co-N-C-	2.80	3.11	0.38	0.1 mA·cm ⁻²	90.03	Present
0.5						work

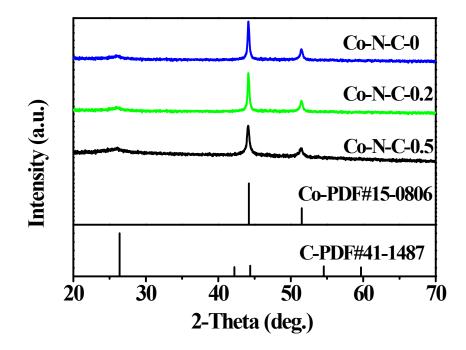


Figure S1. XRD patterns of Co-N-C-0, Co-N-C-0.2, and Co-N-C-0.5.

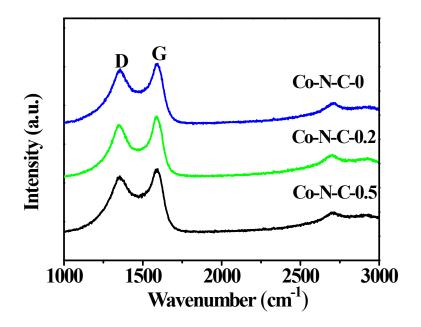


Figure S2. Raman spectra of Co-N-C-0, Co-N-C-0.2, and Co-N-C-0.5.

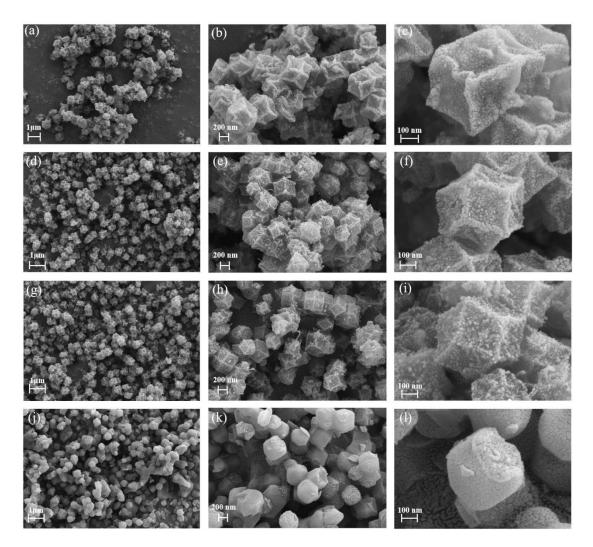


Figure S3. FESEM images of (a, b, c) Co-N-C-0; (d, e, f) Co-N-C-0.2; (g, h, i) Co-N-

C-0.5; (j, k, l) Co-N-C-1.0.

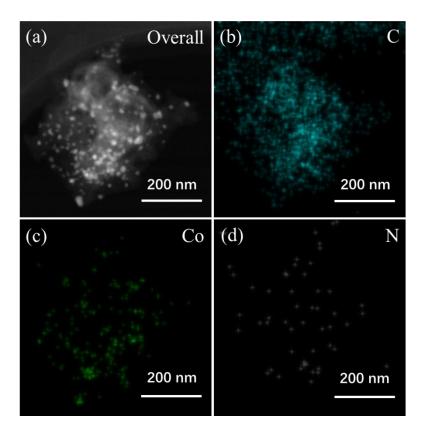


Figure S4. EDS elemental maps of Co-N-C-0.5.

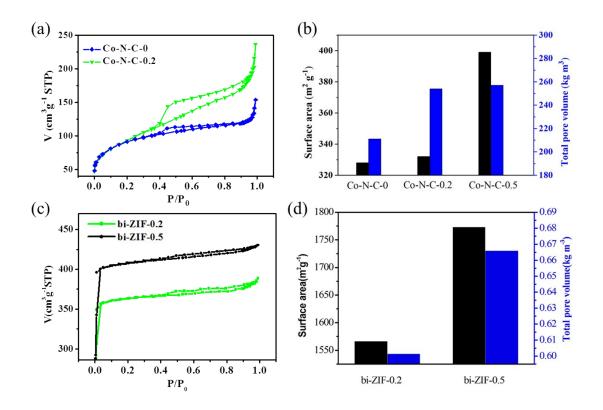


Figure S5. (a) N_2 adsorption-desorption isotherms of Co-N-C-0 and Co-N-C-0.2; (b) surface area and total pore volume of Co-N-C-0, Co-N-C-0.2, and Co-N-C-0.5; (c) N_2 adsorption-desorption isotherms of bi-ZIF-0.2 and bi-ZIF-0.5; (d) surface area and total pore volume of bi-ZIF-0.2 and bi-ZIF-0.5.

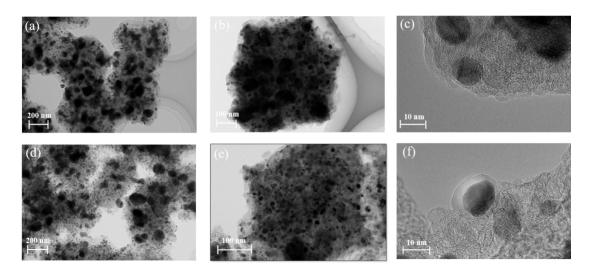


Figure S6. TEM images of (a,b,c) Co-N-C-0 and (d,e,f) Co-N-C-0.2.

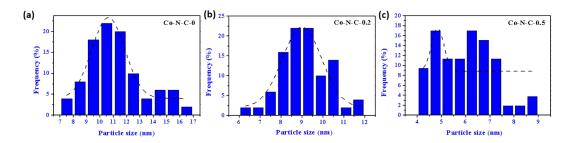


Figure S7. The size distribution of (a) Co-N-C-0; (b) Co-N-C-0.2; (c) Co-N-C-0.5.

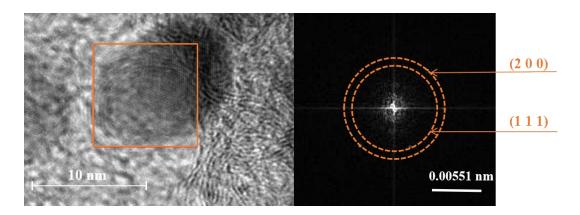


Figure S8. SAED of Co-N-C-0.5

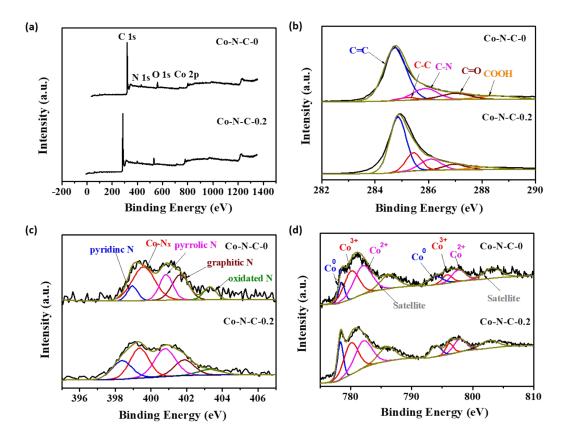


Figure S9. (a) XPS survey spectra and high–resolution spectra of (b) C 1s, (c) N 1s and (d) Co 2p of Co–N–C–0 and Co–N–C–0.5 catalysts.

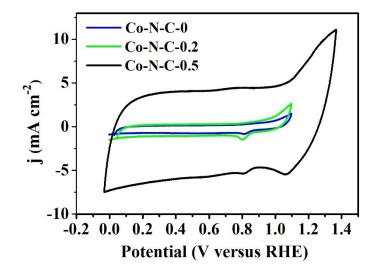


Figure S10. CV curves of different catalysts.

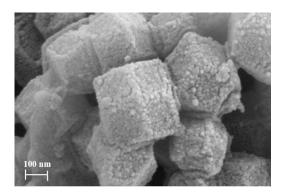


Figure S11. FESEM images of Co-N-C-0.5 after 20 cycles.

Reference

[1] Qian Y , Hu Z , Ge X , et al. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries[J]. Carbon, 2017, 111:641-650.

- [2] Guo H , Feng Q , Zhu J , et al. Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from metal-organic framework for tri-functional ORR, OER and HER electrocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(8):3664-3672.
- [3] Chen B, He X, Yin F, et al. MO-Co@ N-doped carbon (M= Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-Air battery[J]. Advanced Functional Materials, 2017, 27(37): 1700795.
- [4] Chen Y, Guo Y, Cui H, et al. Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid and solid-state Zn-air batteries[J]. Journal of Materials Chemistry A, 2018, 6(20): 9716-9722.
- [5] Hao Y, Xu Y, Liu W, et al. Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst[J]. Materials Horizons, 2018, 5(1): 108-115.
- [6] Lu H S, Zhang H, Zhang X, et al. Transformation of carbon-encapsulated metallic Co into ultrafine Co/CoO nanoparticles exposed on N-doped graphitic carbon for high-performance rechargeable zinc-air battery[J]. Applied Surface Science, 2018, 448: 369-379.

- [7] Liang F, Hayashi K. A High-Energy-Density Mixed-Aprotic-Aqueous Sodium-Air Cell with a Ceramic Separator and a Porous Carbon Electrode[J]. Journal of the Electrochemical Society, 2015, 162(7): A1215-A1219.
- [8] Senthilkumar B, Khan Z, Park S, et al. Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery[J]. Journal of Power Sources, 2016, 311:29-34.
- [9] Kang Y, Zou D, Zhang J, et al. Dual–phase Spinel MnCo₂O₄ Nanocrystals with Nitrogen-doped Reduced Graphene Oxide as Potential Catalyst for Hybrid Na-Air Batteries[J]. Electrochimica Acta, 2017, 244:222-229.
- [10] Sahgong S H, Senthilkumar S T, Kim K, et al. Rechargeable aqueous Na-air batteries: Highly improved voltage efficiency by use of catalysts[J].
 Electrochemistry Communications, 2015, 61: 53-56.
- [11] Khan Z, Senthilkumar B, Park S O, et al. Carambola-shaped VO₂ nanostructures: a binder-free air electrode for an aqueous Na-air battery[J]. Journal of Materials Chemistry A, 2017, 5(5): 2037-2044.