# Neutral and Cationic Enantiopure Group 13 Iminophosphonamide Complexes

Bhupendra Goswami, Ravi Yadav, Christoph Schoo and Peter W. Roesky\*

# **Supporting Information**

## **Table of Contents**

| 1. NMR Spectra             | S2  |
|----------------------------|-----|
| 2 IR Spectra               | S11 |
| 3 Crystallographic data    | S16 |
| 4 Theoretical calculations | S23 |
| 5 References               | S37 |

### 1. NMR Spectra



Figure S1: <sup>1</sup>H (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) NMR spectrum of complex 1.



**Figure S2**: <sup>13</sup>C{<sup>1</sup>H} (100 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) NMR spectrum of complex **1**.



**Figure S3**: <sup>31</sup>P{<sup>1</sup>H} (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) NMR spectrum of complex **1**.



Figure S4: <sup>1</sup>H (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) NMR spectrum of complex 2.



Figure S5: <sup>1</sup>H (400 MHz, thf-d<sub>8</sub>, 298 K) NMR spectrum of complex 2.



Figure S6: Variable temperature <sup>1</sup>H (300 MHz, thf-d<sub>8</sub>, 298 K-173 K) NMR spectrum of complex **2**.



Figure S7:  $^{13}C\{^{1}H\}$  (100 MHz,  $C_{6}D_{6}$ , 298 K) NMR spectrum of complex 2.



**Figure S8**: <sup>31</sup>P{<sup>1</sup>H} (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) NMR spectrum of complex **2**.



Figure S9: <sup>1</sup>H (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) NMR spectrum of complex 3.



**Figure S10**: <sup>13</sup>C{<sup>1</sup>H} (100 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) NMR spectrum of complex **3**.



Figure S11:  ${}^{31}P{}^{1}H$  (162 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) NMR spectrum of complex 3.



Figure S12: <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, 298 K) NMR spectrum of complex 4.



**Figure S13**: <sup>13</sup>C{<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>, 298 K) NMR spectrum of complex **4**.



Figure S14:  ${}^{31}P{}^{1}H$  (162 MHz, CDCl<sub>3</sub>, 298 K) NMR spectrum of complex 4.



Figure S15: <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, 298 K) NMR spectrum of complex 5.



Figure S16: <sup>13</sup>C{<sup>1</sup>H} (100 MHz, CDCl<sub>3</sub>, 298 K) NMR spectrum of complex 5.



Figure S17: <sup>31</sup>P{<sup>1</sup>H} (162 MHz, CDCl<sub>3</sub>, 298 K) NMR spectrum of complex 5.

#### 2 IR Spectra

The predicted Al-H stretching vibration is found as a broad signal at about 1693 cm<sup>-1</sup> ( $1_{H}$ ). By harmonic correction according to the method of Becher<sup>1</sup> using the anharmonicity constant of the diatomic AlH and AID<sup>2</sup> the harmonic value determined to be 1764 cm<sup>-1</sup> is in excellent agreement with the value obtained from an orientational DFT calculation (1740 cm<sup>-1</sup>). In the experimentally deduced IR spectrum of  $\mathbf{1}_{\mathbf{D}}$  a signal at 1203 cm<sup>-1</sup> is attributed to the Al-D stretching vibration (after harmonic correction 1234 cm<sup>-1</sup>). The harmonic isotopic splitting of 530 cm<sup>-1</sup> fits fairly with the splitting determined by the DFT calculation (486 cm<sup>-1</sup>). The low symmetry of the molecule give rise to a variety of coupling possibilities (which are difficult to model by theoretical methods), so that a better match is not expected. (In the IR spectrum of H<sub>2</sub>GaCl there are even vibrations of the D-isotopomer with a higher energy compared to those of its H-isotopomer.<sup>3</sup> The Al-H stretching mode in compound  $[Ph_2P(NSiMe_3)_2]_2AIH^4$ , is found at 1853 cm<sup>-1</sup>. Due to this unexpectedly high value compared to  $\mathbf{1}_H$  we investigated this molecule by theoretical methods as well (see below section 4). We calculated the Al-H valence vibration to be at 1784 cm<sup>-1</sup>. We suppose that the band found in the experimental IR spectrum results in an overtone or combination mode of this likewise less symmetric molecule, amplified by Fermi resonance coupling to a (weak) AlH valence vibration. Another method for the reliable detection of Al-H (D) bonding in  $\mathbf{1}_{H}$  and  $\mathbf{1}_{D}$  is provided by the investigation of the two usually very intense Al-H(D) deformation modes in the IR spectrum. They are found at 636 and 606 cm<sup>-1</sup> ( $\mathbf{1}_{H}$ ) as well as close to 482 cm<sup>-1</sup> ( $\mathbf{1}_{D}$ ). A second Al-D-deformation mode is presumably overlapped by the signals of the AlN<sub>4</sub> framework at 537 and 508 cm<sup>-1</sup> (both  $\mathbf{1}_{H}$  and  $\mathbf{1}_{D}$ ).



Figure S18: IR spectrum of complex 1.



Figure S19 Experimental (above) and calculated (below) spectra for 1<sub>H</sub>.

![](_page_11_Figure_2.jpeg)

Figure S20 Experimental (above) and calculated (below) spectra for  $1_D$ 

![](_page_12_Figure_0.jpeg)

Figure S21 Comparison of experimental spectra for  $1_H$  (blue) and  $1_D$  (red).

![](_page_12_Figure_2.jpeg)

Figure S22: IR spectrum of complex 2.

![](_page_13_Figure_0.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

Figure S24: IR spectrum of complex 4.

![](_page_14_Figure_0.jpeg)

Figure S25: IR spectrum of complex 5.

#### **3** Crystallographic data

#### Single crystal X-ray diffraction

A suitable crystal was covered in mineral oil (Aldrich) and mounted on a glass fiber. The crystal was transferred directly to the cold stream of a STOE IPDS 2 or a STOE StadiVari diffractometer. All structures were solved by using the program SHELXS/T<sup>5</sup> and Olex2<sup>6</sup>. The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least-squares techniques on  $F^2$  by using the program SHELXL.<sup>5</sup> In each case, the locations of the largest peaks in the final difference Fourier map calculations, as well as the magnitude of the residual electron densities, were of no chemical significance.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication no. 1959904-1959908. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: <a href="mailto:deposit@ccdc.cam.ac.uk">deposit@ccdc.cam.ac.uk</a>).

#### **Refinement Details**

The crystal structure of complex **1** contains a half molecule of  $Et_2O$  in the asymmetric unit. This could not be modeled satisfactorily and was therefore removed from the electron density map using the OLEX2 solvent mask.<sup>6</sup> 
 Table S1 Crystal data, data collection and refinement for complexes 1-5.

| Compound                                | 1                      | 2*(0.5 Et <sub>2</sub> )O                                          | 3*(0.5 Et₂O)                    | 4                            | 5                            |
|-----------------------------------------|------------------------|--------------------------------------------------------------------|---------------------------------|------------------------------|------------------------------|
| Formula                                 | $C_{56}H_{57}AIN_4P_2$ | C <sub>58</sub> H <sub>61</sub> AICIN <sub>4</sub> OP <sub>2</sub> | $C_{58}H_{61}CIGaN_4O_{0.5}P_2$ | $C_{56}H_{56}AICI_4GaN_4P_2$ | $C_{56}H_{56}AICI_4GaN_4P_2$ |
| D <sub>calc.</sub> / g cm <sup>-3</sup> | 1.108                  | 1.160                                                              | 1.188                           | 1.341                        | 1.331                        |
| <i>m</i> /mm <sup>-1</sup>              | 0.138                  | 0.186                                                              | 0.644                           | 0.827                        | 0.821                        |
| Formula Weight                          | 874.97                 | 954.47                                                             | 989.21                          | 1085.48                      | 1085.48                      |
| Colour                                  | clear colourless       | clear colourless                                                   | clear colourless                | clear colourless             | clear colourless             |
| Shape                                   | rhombohedral           | prism                                                              | plate                           | irregular                    | prism                        |
| Size/mm <sup>3</sup>                    | 0.28×0.23×0.19         | 0.29×0.22×0.18                                                     | 0.43×0.28×0.09                  | 0.52×0.32×0.18               | 0.26×0.16×0.08               |
| Т/К                                     | 150                    | 150                                                                | 240                             | 150                          | 150                          |
| Crystal System                          | orthorhombic           | orthorhombic                                                       | orthorhombic                    | trigonal                     | trigonal                     |
| Flack Parameter                         | -0.06(3)               | 0.05(3)                                                            | -0.012(15)                      | -0.024(8)                    | 0.024(15)                    |
| Hooft Parameter                         | -0.02(2)               | 0.01(2)                                                            | -0.047(8)                       | 0.003(7)                     | 0.019(10)                    |
| Space Group                             | P21212                 | P21212                                                             | P21212                          | P3 <sub>1</sub> 21           | P3121                        |
| a/Å                                     | 18.1730(2)             | 18.3994(4)                                                         | 18.4844(4)                      | 12.6047(3)                   | 12.6494(2)                   |
| b/Å                                     | 14.6537(5)             | 14.4577(5)                                                         | 14.5247(8)                      | 12.6047(3)                   | 12.6494(2)                   |
| c/Å                                     | 9.8443(6)              | 10.2758(7)                                                         | 10.2958(8)                      | 58.597(2)                    | 58.6453(12)                  |
| <i>α</i> /°                             |                        |                                                                    |                                 |                              |                              |
| βľ                                      |                        |                                                                    |                                 |                              |                              |
| γl°                                     |                        |                                                                    |                                 | 120                          | 120                          |
| V/Å <sup>3</sup>                        | 2621.55(19)            | 2733.5(2)                                                          | 2764.2(3)                       | 8062.5(5)                    | 8126.5(3)                    |
| Z                                       | 2                      | 2                                                                  | 2                               | 6                            | 6                            |
| Ζ'                                      | 0.5                    | 0.5                                                                | 0.5                             | 1                            | 1                            |
| Wavelength/Å                            | 0.71073                | 0.71073                                                            | 0.71073                         | 0.71073                      | 0.71073                      |
| Radiation type                          | ΜοΚα                   | ΜοΚα                                                               | ΜοΚα                            | ΜοΚα                         | ΜοΚα                         |
| <i>€</i> <sub>min</sub> /°              | 1.785                  | 1.791                                                              | 1.783                           | 1.866                        | 1.859                        |
| $\Theta_{max}/$                         | 29.546                 | 27.134                                                             | 29.493                          | 25.553                       | 25.606                       |
| Measured Refl.                          | 35079                  | 16111                                                              | 19503                           | 20530                        | 28278                        |
| Independent Refl.                       | 7327                   | 6036                                                               | 7672                            | 9628                         | 10102                        |
| Reflections with I > 2(I)               | 5686                   | 4707                                                               | 3984                            | 6842                         | 6721                         |
| R <sub>int</sub>                        | 0.0424                 | 0.0261                                                             | 0.0639                          | 0.0597                       | 0.1149                       |
| Largest Peak                            | 0.317                  | 0.727                                                              | 0.685                           | 0.569                        | 0.423                        |
| Deepest Hole                            | -0.184                 | -0.586                                                             | -0.287                          | -0.431                       | -0.402                       |
| GooF                                    | 0.947                  | 1.058                                                              | 0.983                           | 0.942                        | 1.034                        |
| wR <sub>2</sub> (all data)              | 0.0862                 | 0.1697                                                             | 0.1979                          | 0.0813                       | 0.1306                       |
| wR <sub>2</sub>                         | 0.0819                 | 0.1546                                                             | 0.1590                          | 0.0767                       | 0.1145                       |
| R1 (all data)                           | 0.0554                 | 0.0787                                                             | 0.1388                          | 0.0771                       | 0.1150                       |
| R <sub>1</sub>                          | 0.0384                 | 0.0575                                                             | 0.0635                          | 0.0485                       | 0.0654                       |

![](_page_17_Figure_0.jpeg)

**Figure S26**: Molecular structure of **1** in the solid state with ellipsoids drawn at 40 % probability. All the hydrogen atoms except the hydride are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Al-N1 2.040(2), Al-N2 1.932(2), Al-H 1.48(4), P1-N1 1.621(2), P1-N2 1.622(2); N1-Al-N1' 165.03(9), N2-Al-N1 97.68(7), N2-Al-N2' 121.99(11), N1-Al-H 97.49(5), N2-Al-H 119.01(5), P1-Al-P1' 139.94(4), N2-P1-N1 96.46(9).

![](_page_18_Figure_0.jpeg)

**Figure S27**: Molecular structure of **2** in the solid state with ellipsoids drawn at 40 % probability. All the hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles: Al-N1 1.909(3), Al-N2 2.040(3), Cl-Al 2.174(2), P1-N1 1.620(3), P1-N2 1.619(3); N1-Al-N1' 126.4(2), N2-Al-N2' 166.6(2), N1-Al-N2 75.13(13), N1'-Al-N2 98.69(14), N1-Al-Cl 116.81(11), N2-Al-Cl 96.72(10), P1-Al-P1' 142.76(8), N2-P1-N1 96.2(2).

![](_page_19_Figure_0.jpeg)

**Figure S28**: Molecular structure of **3** in the solid state with ellipsoids drawn at 40 % probability. All the hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles: Ga-N1 1.950(6), Ga-N2 2.087(5), Ga-Cl 2.240(2), P1-N1 1.617(6), P1-N2 1.625(7);N1-Ga-Cl 116.2(2), N2-Ga-Cl 96.88(13), N2-Ga-N2' 166.2(3), N1-Ga-N1' 127.7(3), N1-Ga-N2 73.4(2), N1-Ga-N2' 100.4(2), N1-P1-N2 96.4(3).

![](_page_20_Figure_0.jpeg)

**Figure S29**: Molecular structure of **4** in the solid state with ellipsoids drawn at 40 % probability. All the hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Al-N1 1.857(4), Al-N2 1.871(4), Ga-Cl1 2.166(2), Ga-Cl2 2.171(2), Ga-Cl3 2.158(2), Ga-Cl4 2.15(2), P1-N1 1.631(4), P2-N2 1.629(4); N1-Al-N1' 79.2(2), N1-Al-N2 126.3(2), N1-Al-N2' 126.3(2), N2-Al-N2' 79.7(2), P2-Al-P1 180.0, Cl1-Ga-Cl2 110.89(6), Cl3-Ga-Cl1 109.87(7), Cl3-Ga-Cl2 106.93(7), Cl4-Ga-Cl1 108.97(7), Cl4-Ga-Cl2 108.19(9), Cl4-Ga-Cl3 112.0(9), N1-P1-N1' 93.0(3), N2-P2-N2' 94.7(3).

![](_page_21_Figure_0.jpeg)

**Figure S30**: Molecular structure of **5** in the solid state with ellipsoids drawn at 40 % probability. All the hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and bond angles [°]: Ga-N1 1.923(6), Ga-N2 1.938(6), Al-Cl1 2.129(3), Al-Cl2 2.119(4), Al-Cl3 2.134(4), Al-Cl4 2.109(4), P1-N1 1.629(6), P2-N2 1.626(6); N1-Ga-N1' 76.9(4), N1-Ga-N2 126.5(3), N2-Ga-N2' 77.2(4), N1-Ga-N2' 129.0(3), Cl1-Al-Cl3 110.7(2), Cl2-Al-Cl1 109.8(2), Cl2-Al-Cl3 107.4(2), Cl4-Al-Cl1 109.2(2), Cl4-Al-Cl2 112.2(2), Cl4-Al-Cl3 107.5(2), N1-P1-N1' 94.4(5), N2-P2-N2' 96.1(5).

#### **4** Theoretical calculations

The geometries of the molecules under discussion were computed with the program system TURBOMOLE 7.3<sup>7</sup> within the framework of Density Functional Theory (DFT) at the RI-BP86 level<sup>8</sup> using a def-SV(P) basis set<sup>9</sup> for each atom without the constraint of symmetry. The theoretical infrared spectra (frequencies and intensities) were calculated using the module AOFORCE.<sup>10</sup> The motions related to the vibrations (eigenvector analysis) were investigated by means of the program TmoleX<sup>11</sup>.

Cartesian Coordinates of 1 (given in atomic units (a.u.))

| -2.93613909680825 | 3.88473074135491   | -1.01029020552826 p  |
|-------------------|--------------------|----------------------|
| 0.00103807722899  | 0.00023944662147   | -2.63589807954752 al |
| -0.00865473250568 | 3.94756282150709   | -2.10474278390948 n  |
| -3.16353056632907 | 0.76041747376893   | -0.87154985146691 n  |
| -3.48651934221284 | 5.46606416396477   | 2.03253403872687 c   |
| -5.14495963168304 | 5.36932873632122   | -3.26759274917761 c  |
| 2.94007531633281  | -3.88417960440561  | -1.01384013076607 p  |
| 0.01221391947129  | -3.94684440647514  | -2.10731808789015 n  |
| 3,16761436702161  | -0.76003456344250  | -0.87466540765508 n  |
| -0.00060722316645 | 0.00188556353295   | -5 71861634927987 h  |
| 0.85920373242740  | 5 97415974294083   | -3 82538453999972 c  |
| -5 22152851873937 | -0.84662174160188  | 0.07/97026801889 c   |
| -5 94028462404118 | 5 76111632290634   | 3.04536816771354 c   |
| 1 29517766205601  | 6 205 480001 22062 | 2 44475765500105     |
| -1.38517760395001 | 0.29548099133062   | 3.44475765590195 C   |
| -6.34/1849/429/45 | /./12///65312564   | -2.84339976990652 C  |
| -5.45839481156891 | 4.15610643594993   | -5.62851689074520 c  |
| 3.49132829405871  | -5.46683918816969  | 2.02813981510524 c   |
| 5.14728032854033  | -5.36867828058910  | -3.27277923088350 c  |
| -0.85663074601923 | -5.97481288515241  | -3.82575862573304 c  |
| 5.22483544819413  | 0.84610299554096   | 0.07523266981111 c   |
| 1.37815945429355  | 8.50274694712744   | -2.50317303525710 c  |

| -0.62483414086502 | 6.36934824101996  | -5.27462658686970 h |
|-------------------|-------------------|---------------------|
| 3.21396252820119  | 5.11160132212776  | -5.30316820839365 c |
| -5.60659540835962 | -0.75008325977710 | 2.95728568059524 c  |
| -4.50255062126007 | -2.78919615186080 | -0.30316156211008 h |
| -7.68384694135012 | -0.55859411312513 | -1.44373941348010 c |
| -7.60738258138762 | 5.11252929413938  | 1.97812578962156 h  |
| -6.27781339441292 | 6.87592379688191  | 5.42836589163743 c  |
| 0.52353417638141  | 6.07247655890979  | 2.65157274879776 h  |
| -1.72902005605873 | 7.41316256181961  | 5.82775061755902 c  |
| -6.07040970690810 | 8.71995253966722  | -1.04295650544429 h |
| -7.89123242710610 | 8.78728159328130  | -4.72112872836756 c |
| -4.46765600326461 | 2.35897351870847  | -6.00046697531311 h |
| -6.99024752696171 | 5.23975834684861  | -7.50219156846124 c |
| 5.94570422240314  | -5.76865610634695 | 3.03741181724009 c  |
| 1.38976300178742  | -6.29129631771574 | 3.44299568407544 c  |
| 6.34433389607656  | -7.71548743718684 | -2.85247747823534 c |
| 5.46382909203810  | -4.15202914213406 | -5.63148669499346 c |
| -1.37860401622163 | -8.50128166908555 | -2.50052430133330 c |
| 0.62816712035134  | -6.37343622398757 | -5.27327418770053 h |
| -3.20926757626030 | -5.11209487923373 | -5.30680867080803 c |
| 5.60410579047827  | 0.74935189745367  | 2.95828085691153 c  |
| 4.50810985956595  | 2.78918092152145  | -0.30442332497566 h |
| 7.68993736357948  | 0.55557073727143  | -1.43829704973855 c |
| 3.26481195055823  | 8.73902115402356  | -0.62976684753140 c |
| 0.02129065092189  | 10.68948873844395 | -3.19399406941706 c |
| 4.84510651874403  | 4.77662004669126  | -4.02438752582256 h |
| 3.77459126844625  | 6.59233767633540  | -6.68431249438421 h |
| 2.80580801712190  | 3.33346680987585  | -6.34212421937324 h |
| -3.49808108685901 | -1.11468868978652 | 4.55257540153558 c  |

| -7.99509065264063 | -0.44914024301600  | 4.10040208615106 c  |
|-------------------|--------------------|---------------------|
| -8.58782447030868 | 1.31830917530357   | -1.15391581510774 h |
| -9.07940544563228 | -2.03988031144963  | -0.92061224264565 h |
| -7.27821466388863 | -0.74896883512487  | -3.49183551457085 h |
| -8.19865414785710 | 7.08789161629258   | 6.20630275326711 h  |
| -4.17302089735869 | 7.70672817037583   | 6.82168983272233 c  |
| -0.07086527324691 | 8.06455145254815   | 6.90740759260518 h  |
| -8.83244943692187 | 10.61178220159715  | -4.36243390192365 h |
| -8.22395214786647 | 7.55070974478210   | -7.04644238251016 c |
| -7.22082006154449 | 4.27355282204829   | -9.33390360090809 h |
| 7.61292795606058  | -5.12355415396532  | 1.96819995961854 h  |
| 6.28371209974671  | -6.88601853119294  | 5.41915663502052 c  |
| -0.51950999555352 | -6.06280173413648  | 2.65262828579811 h  |
| 1.73407507574100  | -7.41148641567573  | 5.82471533341974 c  |
| 6.06499438363500  | -8.72522656417337  | -1.05386588133059 h |
| 7.88632408285232  | -8.79008782283969  | -4.73183833002391 c |
| 4.47702307808465  | -2.35213959687504  | -6.00039241928502 h |
| 6.99364956494891  | -5.23571091814559  | -7.50680263149707 c |
| -3.26541321873531 | -8.73334234241727  | -0.62678104163763 c |
| -0.02414769921681 | -10.69032961969588 | -3.18876219999129 c |
| -4.84077215572084 | -4.77251124078129  | -4.02971945076472 h |
| -3.77094749238414 | -6.59479794376481  | -6.68540984162390 h |
| -2.79828274328424 | -3.33642193784740  | -6.34883246847595 h |
| 3.49326771284243  | 1.11991943558487   | 4.54909491975411 c  |
| 7.98952216715053  | 0.44308710610877   | 4.10635046167371 c  |
| 8.59079132729346  | -1.32275835753827  | -1.14782268717715 h |
| 9.08639056513176  | 2.03455562962855   | -0.91101431647431 h |
| 7.28909294723596  | 0.74791353077403   | -3.48716609557548 h |
| 4.36263102369095  | 7.06096352204831   | -0.06010641791644 h |

| 3.77137338795294   | 11.07678971012541  | 0.51712792234412 c  |
|--------------------|--------------------|---------------------|
| -1.45306743810229  | 10.54625786639750  | -4.66243656407004 h |
| 0.51508034763716   | 13.03766772075323  | -2.04903029149620 c |
| -1.62035392081876  | -1.37015511251790  | 3.69063335896985 h  |
| -3.75932434663012  | -1.17487582214315  | 7.18923937771290 c  |
| -9.69251264855031  | -0.17432590224512  | 2.92858317671462 h  |
| -8.26765204440601  | -0.49705982879810  | 6.74604356259525 c  |
| -4.44266639096115  | 8.58479454635758   | 8.69240290313153 h  |
| -9.43491424275733  | 8.39619919828262   | -8.51666005735121 h |
| 8.20512005567922   | -7.10392101864298  | 6.19407508113493 h  |
| 4.17876481434706   | -7.71252029333785  | 6.81477209891792 c  |
| 0.07579710364173   | -8.05932341836234  | 6.90631599116322 h  |
| 8.82364090264402   | -10.61717720652863 | -4.37612797771224 h |
| 8.22228253311382   | -7.55009819833161  | -7.05486813584778 c |
| 7.22673157039867   | -4.26672423671045  | -9.33672586992434 h |
| -4.36131220745914  | -7.05346726284319  | -0.05883039598360 h |
| -3.77457934022899  | -11.06923492688373 | 0.52277629633880 c  |
| 1.45020877609252   | -10.55050134667016 | -4.65756337214998 h |
| -0.52063375254925  | -13.03669761324371 | -2.04125534104235 c |
| 1.61791548875543   | 1.37932443618936   | 3.68313727004073 h  |
| 3.74942861252819   | 1.18175146138644   | 7.18621681809729 c  |
| 9.68856545139138   | 0.16309647809045   | 2.93807412957459 h  |
| 8.25695586059444   | 0.49245183786776   | 6.75249902178906 c  |
| 2.39342659525887   | 13.23953994236072  | -0.18611440341079 c |
| 5.25854436030304   | 11.21570478766997  | 1.97162473229055 h  |
| -0.57697610898312  | 14.71885094620887  | -2.62101316793127 h |
| -6.15281477784161  | -0.85969441216168  | 8.30359730098470 c  |
| -2.07834260245663  | -1.48329349709670  | 8.38196475624768 h  |
| -10.15832869284834 | -0.25170960361590  | 7.59017577517612 h  |

| 4.44878514658365  | -8.59270874016506  | 8.68443246556354 h  |
|-------------------|--------------------|---------------------|
| 9.43160420499990  | -8.39568546649441  | -8.52637684134368 h |
| -2.39903178240298 | -13.23432624320940 | -0.17794551874856 c |
| -5.26166847522988 | -11.20470243814798 | 1.97768213975005 h  |
| 0.56966137212087  | -14.71970981361363 | -2.61122481173252 h |
| 6.13999301464412  | 0.86195148931995   | 8.30553750122211 c  |
| 2.06680971289258  | 1.49520453673031   | 8.37532270582335 h  |
| 10.14530525798848 | 0.24294980233036   | 7.60061049450778 h  |
| 2.78923599882276  | 15.07633033573133  | 0.71562490333674 h  |
| -6.36584883535495 | -0.90489605541812  | 10.37640743380364 h |
| -2.79700821408971 | -15.06967257849809 | 0.72577670630641 h  |
| 6.34912279540513  | 0.90891697048774   | 10.37870325186430 h |

| Theoretic           | al IR spectrum    | 94.88  | 0.02647  | 302.45 | 27.61008 |
|---------------------|-------------------|--------|----------|--------|----------|
|                     | of 1 <sub>H</sub> | 98.66  | 0.00398  | 305.97 | 4.13212  |
| wave num            | ber IR int.       | 101.75 | 0.10425  | 312.79 | 0.82304  |
| (cm <sup>-1</sup> ) | (km/mol)          | 103.23 | 0.28878  | 323.26 | 1.47097  |
| 8.47                | 0.00112           | 105.46 | 0.30369  | 326.99 | 0.28299  |
| 8.62                | 0.00682           | 119.13 | 0.23619  | 331.14 | 30.35168 |
| 12.49               | 0.13381           | 144.47 | 0.02150  | 342.94 | 0.53804  |
| 13.11               | 0.00895           | 173.71 | 0.48371  | 362.13 | 1.86308  |
| 22.46               | 0.16699           | 176.02 | 0.73306  | 371.72 | 1.34796  |
| 24.13               | 0.00276           | 182.73 | 2.26568  | 392.35 | 0.40433  |
| 25.28               | 0.02698           | 183.59 | 0.41385  | 395.99 | 0.07043  |
| 29.55               | 0.03179           | 186.17 | 0.15400  | 396.91 | 0.02636  |
| 32.16               | 0.00799           | 189.71 | 0.01125  | 403.12 | 0.60644  |
| 33.03               | 0.30472           | 195.73 | 2.31797  | 405.49 | 0.00308  |
| 41.73               | 0.11379           | 206.75 | 0.70589  | 405.80 | 2.86660  |
| 41.95               | 0.25027           | 207.90 | 1.12914  | 407.10 | 11.00621 |
| 46.26               | 0.26409           | 211.91 | 0.07384  | 409.58 | 0.00655  |
| 48.54               | 0.00190           | 218.41 | 0.04925  | 411.40 | 0.28975  |
| 53.11               | 0.72856           | 219.67 | 5.01821  | 412.30 | 0.05739  |
| 55.65               | 0.00634           | 242.08 | 1.33086  | 447.00 | 0.13824  |
| 57.33               | 0.00973           | 243.87 | 2.22404  | 447.29 | 35.01403 |
| 61.43               | 0.03148           | 246.90 | 0.09510  | 453.77 | 0.35733  |
| 67.52               | 0.14535           | 247.56 | 0.57665  | 457.03 | 18.30274 |
| 69.32               | 0.00054           | 257.94 | 0.05402  | 462.06 | 0.67250  |
| 77.16               | 0.08406           | 258.76 | 0.70583  | 463.64 | 11.28445 |
| 77.39               | 0.00717           | 262.66 | 21.93167 | 468.81 | 5.33922  |
| 80.05               | 0.04514           | 266.21 | 0.72913  | 470.76 | 9.81347  |
| 80.58               | 0.04988           | 275.36 | 27.73266 | 499.96 | 8.28502  |
| 86.23               | 0.02321           | 284.22 | 1.21984  | 504.41 | 76.87795 |
|                     |                   |        |          |        |          |

| 509.65 | 0.77599   | 703.93 | 34.34298  | 898.37 | 1.98713  |
|--------|-----------|--------|-----------|--------|----------|
| 511.99 | 42.71393  | 704.97 | 32.53578  | 898.46 | 1.68880  |
| 524.79 | 13.72717  | 706.30 | 0.61729   | 899.82 | 7.54442  |
| 528.74 | 183.97424 | 706.47 | 19.78119  | 907.69 | 0.35699  |
| 561.68 | 9.28138   | 715.41 | 162.10527 | 914.63 | 0.78851  |
| 561.86 | 1.12699   | 721.61 | 36.33105  | 914.78 | 0.77827  |
| 568.80 | 1.31565   | 727.32 | 133.81494 | 920.33 | 0.87700  |
| 571.33 | 27.67612  | 740.40 | 59.90144  | 920.49 | 2.21549  |
| 600.48 | 202.20750 | 740.77 | 0.57954   | 951.42 | 0.61882  |
| 606.20 | 62.45783  | 742.87 | 0.10724   | 951.58 | 0.05104  |
| 607.31 | 3.83805   | 743.79 | 50.87260  | 952.70 | 0.97310  |
| 609.19 | 2.78539   | 749.31 | 3.78570   | 960.09 | 1.66298  |
| 609.77 | 5.79994   | 750.89 | 8.98374   | 962.61 | 12.28293 |
| 610.08 | 0.36150   | 768.47 | 109.46966 | 962.79 | 1.76631  |
| 612.20 | 2.76132   | 769.15 | 3.12719   | 962.85 | 2.62361  |
| 613.17 | 77.75116  | 770.71 | 8.57181   | 963.12 | 1.56393  |
| 614.33 | 0.01624   | 770.75 | 15.99144  | 964.77 | 0.01669  |
| 615.91 | 3.40081   | 796.34 | 0.17488   | 967.02 | 1.82842  |
| 616.52 | 114.25030 | 809.80 | 319.66299 | 967.09 | 0.01799  |
| 653.13 | 10.10250  | 827.78 | 92.21023  | 968.94 | 70.39498 |
| 654.43 | 6.34543   | 829.40 | 1.49299   | 975.81 | 9.17554  |
| 672.10 | 4.19970   | 831.19 | 1.08033   | 976.68 | 0.32549  |
| 678.56 | 72.72431  | 832.49 | 1.02941   | 976.83 | 6.09008  |
| 695.38 | 114.99460 | 833.98 | 5.88195   | 982.00 | 0.49956  |
| 697.75 | 50.39826  | 840.90 | 0.07848   | 982.55 | 0.28200  |
| 698.82 | 45.77460  | 842.45 | 0.00404   | 982.64 | 1.37421  |
| 700.31 | 6.51985   | 842.74 | 1.83874   | 984.40 | 0.21915  |
| 700.45 | 13.37485  | 845.52 | 0.24404   | 984.50 | 0.58081  |
| 703.80 | 13.32086  | 846.52 | 0.54420   | 984.56 | 0.34765  |

| 985.98  | 1.49425  | 1088.51 | 24.72386  | 1203.58 | 75.74904 |
|---------|----------|---------|-----------|---------|----------|
| 986.06  | 2.85741  | 1088.68 | 42.66545  | 1268.33 | 28.98215 |
| 986.79  | 0.49741  | 1091.70 | 10.68383  | 1268.49 | 7.12139  |
| 986.80  | 0.03404  | 1092.10 | 73.79793  | 1282.21 | 7.43636  |
| 987.92  | 0.15952  | 1096.23 | 15.85815  | 1282.34 | 15.14751 |
| 987.97  | 0.33932  | 1097.07 | 1.93394   | 1292.44 | 2.59058  |
| 990.96  | 0.00080  | 1119.12 | 117.36256 | 1292.45 | 3.41221  |
| 1012.32 | 0.37092  | 1121.57 | 524.45534 | 1300.84 | 4.00518  |
| 1013.83 | 22.86776 | 1136.90 | 3.19036   | 1300.90 | 1.53242  |
| 1023.14 | 8.91148  | 1138.41 | 0.05068   | 1312.02 | 2.44823  |
| 1023.43 | 3.24329  | 1138.42 | 1.20441   | 1312.25 | 3.34743  |
| 1024.43 | 0.01500  | 1139.22 | 0.01020   | 1314.16 | 2.49255  |
| 1024.45 | 1.01211  | 1142.40 | 0.27793   | 1314.41 | 0.27437  |
| 1025.05 | 3.78664  | 1142.42 | 0.26953   | 1316.86 | 1.28298  |
| 1025.26 | 5.96253  | 1143.25 | 0.32656   | 1317.42 | 14.44466 |
| 1030.50 | 20.39036 | 1143.26 | 0.55818   | 1344.46 | 0.83954  |
| 1031.34 | 20.93737 | 1156.73 | 0.25949   | 1344.62 | 10.02457 |
| 1032.15 | 21.27919 | 1156.78 | 0.63328   | 1350.06 | 27.98037 |
| 1033.73 | 0.09513  | 1162.65 | 4.70697   | 1350.97 | 13.26602 |
| 1059.58 | 15.63848 | 1164.62 | 0.09201   | 1354.21 | 9.90344  |
| 1059.83 | 0.36761  | 1165.97 | 1.77087   | 1354.37 | 7.85152  |
| 1067.13 | 37.92187 | 1167.75 | 2.18838   | 1363.41 | 0.05784  |
| 1068.01 | 1.19127  | 1170.91 | 6.19782   | 1363.43 | 0.46093  |
| 1072.35 | 7.33921  | 1170.93 | 6.12002   | 1365.91 | 0.77425  |
| 1073.04 | 0.64697  | 1179.11 | 0.15895   | 1365.95 | 0.40324  |
| 1076.83 | 0.30369  | 1179.50 | 57.69385  | 1373.02 | 1.91955  |
| 1077.13 | 2.84299  | 1192.30 | 61.02729  | 1373.25 | 1.17536  |
| 1082.24 | 56.89523 | 1192.42 | 8.21670   | 1378.56 | 14.07930 |
| 1082.65 | 13.08614 | 1203.21 | 15.14272  | 1378.61 | 2.84997  |

| 1424.01 | 0.59445  | 1596.91 | 1.28194   | 3077.79 | 4.70264  |
|---------|----------|---------|-----------|---------|----------|
| 1424.81 | 2.53335  | 1597.84 | 0.06745   | 3082.04 | 1.39031  |
| 1427.37 | 4.87300  | 1597.84 | 0.56787   | 3082.28 | 0.27169  |
| 1427.41 | 9.07980  | 1601.95 | 0.27889   | 3083.00 | 0.58484  |
| 1430.85 | 1.23502  | 1601.98 | 0.06526   | 3083.01 | 0.57956  |
| 1430.91 | 21.00648 | 1604.26 | 0.50215   | 3085.51 | 0.84245  |
| 1432.81 | 26.69182 | 1604.28 | 2.43716   | 3085.65 | 0.72105  |
| 1432.95 | 5.42921  | 1614.92 | 4.86282   | 3090.02 | 0.47377  |
| 1436.21 | 5.82034  | 1614.94 | 0.00812   | 3090.06 | 0.32980  |
| 1436.31 | 11.84286 | 1616.55 | 0.46873   | 3091.85 | 11.68978 |
| 1441.50 | 20.73502 | 1617.28 | 5.07230   | 3091.85 | 4.07347  |
| 1441.60 | 6.05886  | 1740.62 | 230.45828 | 3092.30 | 2.00639  |
| 1442.91 | 7.93725  | 2889.98 | 14.61033  | 3092.37 | 1.85797  |
| 1442.93 | 12.14021 | 2890.09 | 38.26532  | 3092.79 | 24.45941 |
| 1446.01 | 1.00348  | 2936.89 | 13.27158  | 3093.79 | 2.53409  |
| 1446.09 | 6.39799  | 2936.94 | 4.51093   | 3098.42 | 6.35994  |
| 1473.21 | 0.39478  | 2947.07 | 19.00699  | 3098.48 | 13.34474 |
| 1473.23 | 2.83250  | 2947.16 | 13.08718  | 3098.64 | 36.86553 |
| 1475.01 | 2.85483  | 2951.73 | 12.25115  | 3098.66 | 9.17064  |
| 1475.10 | 7.58802  | 2951.82 | 22.62769  | 3102.19 | 10.60067 |
| 1484.15 | 13.42954 | 3025.72 | 10.10414  | 3102.21 | 6.02447  |
| 1484.18 | 3.49151  | 3025.85 | 54.49554  | 3104.66 | 0.71792  |
| 1487.16 | 1.45751  | 3037.34 | 22.83999  | 3105.25 | 38.24634 |
| 1488.07 | 21.19555 | 3037.40 | 22.00007  | 3107.71 | 14.37876 |
| 1587.71 | 0.70235  | 3047.84 | 16.83367  | 3107.75 | 15.28481 |
| 1587.73 | 0.06721  | 3047.96 | 14.31753  | 3109.95 | 45.82131 |
| 1590.72 | 0.82494  | 3050.23 | 7.75806   | 3109.98 | 2.61430  |
| 1590.74 | 0.18554  | 3050.37 | 8.84434   | 3112.51 | 14.81150 |
| 1596.52 | 0.46025  | 3077.76 | 6.12773   | 3112.54 | 25.67417 |

| 3113.02             | 24.07135          | 3116.11 | 16.40553 | 3134.09 | 2.67639  |
|---------------------|-------------------|---------|----------|---------|----------|
| 3114.45             | 1.18489           | 3116.88 | 3.78440  | 3134.30 | 4.20814  |
| 3115.84             | 3.39893           | 3118.74 | 27.02632 |         |          |
| 3115.99             | 24.93623          | 3118.79 | 3.50106  |         |          |
|                     |                   |         |          |         |          |
|                     |                   |         |          |         |          |
| Theoretica          | l IR spectrum     | 77.18   | 0.08220  | 219.41  | 5.88171  |
| c                   | of 1 <sub>D</sub> | 77.42   | 0.00731  | 241.88  | 1.30719  |
| wave nur            | nber IR int.      | 80.04   | 0.04851  | 243.72  | 2.98153  |
| (cm <sup>-1</sup> ) | (km/mol)          | 80.62   | 0.05032  | 246.52  | 0.01958  |
| 8.47                | 0.00114           | 86.29   | 0.02329  | 247.68  | 0.62124  |
| 8.63                | 0.00685           | 94.93   | 0.02627  | 258.55  | 0.08069  |
| 12.49               | 0.13393           | 98.74   | 0.00403  | 258.93  | 0.50503  |
| 13.11               | 0.00900           | 101.82  | 0.10749  | 261.52  | 24.85637 |
| 22.47               | 0.16753           | 103.28  | 0.28662  | 266.43  | 0.73803  |
| 24.14               | 0.00276           | 105.52  | 0.30577  | 273.98  | 19.68844 |
| 25.29               | 0.02702           | 119.09  | 0.22845  | 283.63  | 1.16383  |
| 29.57               | 0.03190           | 144.42  | 0.02305  | 297.07  | 7.24592  |
| 32.17               | 0.00807           | 173.80  | 0.39666  | 301.92  | 30,26957 |
| 33.04               | 0.30721           | 176.03  | 0 74124  | 313 43  | 0 85473  |
| 41.75               | 0.11431           | 182 54  | 2 48280  | 323.10  | 3 22530  |
| 41.96               | 0.25084           | 183 72  | 0.41272  | 327 58  | 0 24027  |
| 46.22               | 0.26899           | 186.29  | 0.1579/  | 329.80  | 29 59228 |
| 48.56               | 0.00189           | 180.25  | 0.13734  | 342 35  | 0 61386  |
| 53.12               | 0.73296           | 105.04  | 2.50766  | 342.33  | 0.01380  |
| 55.69               | 0.00636           | 195.07  | 2.50700  | 301.07  | 4.01204  |
| 57.37               | 0.00969           | 200.83  | 0.71389  | 371.75  | 1.35100  |
| 61.47               | 0.03107           | 207.66  | 1.20450  | 392.24  | 0.39277  |
| 67.56               | 0.14582           | 212.01  | 0.07048  | 395.95  | 1.38646  |
| 69.37               | 0.00053           | 218.45  | 0.05940  | 397.33  | 0.02003  |
|                     |                   |         |          |         |          |

| 398.69 | 5.38511   | 609.41 | 2.78878   | 750.55 | 30.87338  |
|--------|-----------|--------|-----------|--------|-----------|
| 403.61 | 0.22010   | 610.18 | 1.02003   | 769.11 | 110.70007 |
| 405.95 | 0.00319   | 610.29 | 0.41535   | 770.33 | 2.97278   |
| 406.47 | 0.07820   | 610.99 | 2.27610   | 771.65 | 21.41787  |
| 410.04 | 0.00605   | 612.43 | 0.07700   | 771.74 | 1.88622   |
| 411.77 | 0.01997   | 614.53 | 0.01488   | 797.12 | 0.15997   |
| 412.75 | 0.05867   | 616.17 | 3.44683   | 808.35 | 228.51526 |
| 438.99 | 22.78478  | 620.96 | 15.85939  | 820.98 | 223.11608 |
| 446.12 | 123.55530 | 653.69 | 9.42049   | 831.94 | 2.87297   |
| 447.26 | 0.15551   | 654.47 | 1.84893   | 833.30 | 3.87758   |
| 453.64 | 0.37235   | 672.37 | 4.07311   | 835.03 | 1.01220   |
| 457.05 | 25.85726  | 678.23 | 52.17140  | 835.07 | 2.73766   |
| 462.36 | 0.71372   | 697.69 | 173.22366 | 843.55 | 0.05594   |
| 464.68 | 30.85889  | 699.20 | 50.98950  | 845.08 | 0.00375   |
| 469.08 | 5.45994   | 700.92 | 14.60030  | 845.20 | 0.83486   |
| 470.96 | 17.42182  | 701.92 | 8.04523   | 848.18 | 0.25618   |
| 500.08 | 7.94206   | 702.04 | 11.50036  | 849.12 | 0.57772   |
| 505.91 | 152.45950 | 704.30 | 23.85608  | 900.74 | 2.37250   |
| 509.99 | 0.82163   | 704.80 | 27.60807  | 900.84 | 1.54592   |
| 514.15 | 0.36661   | 706.27 | 19.50608  | 902.32 | 7.32202   |
| 522.93 | 60.65475  | 707.94 | 5.09529   | 910.27 | 0.35451   |
| 528.64 | 183.06021 | 707.98 | 10.04170  | 917.27 | 0.70846   |
| 542.44 | 58.55147  | 722.14 | 35.96603  | 917.37 | 0.64521   |
| 562.37 | 0.76479   | 725.20 | 68.50482  | 923.03 | 0.96537   |
| 566.42 | 60.33851  | 741.83 | 79.06136  | 923.19 | 2.51924   |
| 569.13 | 1.43564   | 742.28 | 0.33643   | 954.09 | 0.60607   |
| 578.26 | 85.09336  | 744.35 | 0.25624   | 954.26 | 0.07998   |
| 607.57 | 3.55861   | 744.84 | 35.65709  | 955.40 | 0.93394   |
| 608.47 | 1.53021   | 750.19 | 4.24689   | 962.68 | 4.51999   |

| 964.21  | 12.73031 | 1025.70 | 1.16191   | 1146.68 | 0.20425   |
|---------|----------|---------|-----------|---------|-----------|
| 964.80  | 1.25865  | 1026.63 | 4.69246   | 1146.70 | 0.17812   |
| 965.49  | 0.73322  | 1026.73 | 7.33163   | 1147.54 | 0.28614   |
| 965.53  | 0.86249  | 1032.49 | 20.29615  | 1147.55 | 0.60552   |
| 966.71  | 0.09409  | 1033.09 | 26.42526  | 1160.83 | 0.30269   |
| 969.52  | 0.14128  | 1033.98 | 13.26578  | 1160.87 | 0.30942   |
| 969.65  | 15.64889 | 1035.82 | 0.03622   | 1166.66 | 6.07865   |
| 969.95  | 55.51365 | 1061.73 | 16.76798  | 1168.64 | 0.04556   |
| 978.48  | 6.08755  | 1062.08 | 0.24327   | 1170.04 | 1.90400   |
| 979.57  | 0.25303  | 1069.31 | 38.71147  | 1171.81 | 2.33479   |
| 979.70  | 4.73290  | 1070.10 | 1.27007   | 1174.78 | 5.73300   |
| 983.03  | 0.24625  | 1074.94 | 8.35651   | 1174.88 | 9.43363   |
| 983.09  | 0.62666  | 1075.54 | 0.33304   | 1180.31 | 0.32738   |
| 983.73  | 1.25666  | 1079.35 | 1.34096   | 1180.57 | 55.18746  |
| 984.88  | 0.34970  | 1079.70 | 3.44978   | 1193.94 | 63.04421  |
| 984.92  | 0.52506  | 1083.61 | 58.78044  | 1194.06 | 7.89221   |
| 985.05  | 0.22774  | 1084.01 | 11.92100  | 1204.14 | 17.70160  |
| 986.53  | 1.73381  | 1090.70 | 26.67476  | 1204.42 | 69.05439  |
| 986.56  | 2.51879  | 1090.90 | 44.95617  | 1254.36 | 140.83769 |
| 989.38  | 0.47923  | 1092.89 | 10.18671  | 1271.37 | 31.08975  |
| 989.63  | 0.00099  | 1093.34 | 71.79770  | 1271.66 | 1.82165   |
| 990.49  | 0.18676  | 1098.09 | 17.05223  | 1285.57 | 7.62621   |
| 990.66  | 0.20666  | 1099.09 | 2.31755   | 1285.71 | 14.57539  |
| 993.23  | 0.11527  | 1119.75 | 109.60005 | 1296.09 | 4.23947   |
| 1014.18 | 0.50869  | 1121.90 | 501.34256 | 1296.10 | 1.99327   |
| 1015.62 | 21.02083 | 1141.16 | 2.39449   | 1304.54 | 3.99698   |
| 1024.44 | 7.26175  | 1142.68 | 0.05171   | 1304.61 | 1.21596   |
| 1024.60 | 3.37896  | 1142.69 | 1.10407   | 1315.94 | 2.47170   |
| 1025.69 | 0.05445  | 1143.51 | 0.00989   | 1316.26 | 5.88262   |

| 1318.26 | 2.45198  | 1444.59 | 0.12050  | 2900.60 | 14.75554 |
|---------|----------|---------|----------|---------|----------|
| 1318.56 | 0.37303  | 1447.06 | 10.76199 | 2900.70 | 38.25787 |
| 1320.99 | 0.82399  | 1447.25 | 21.08180 | 2947.75 | 12.81255 |
| 1321.63 | 10.82616 | 1448.95 | 1.91783  | 2947.79 | 4.89226  |
| 1348.47 | 10.13524 | 1449.10 | 1.54966  | 2958.36 | 19.46068 |
| 1349.07 | 5.74893  | 1475.68 | 0.51196  | 2958.45 | 13.05366 |
| 1354.00 | 26.05129 | 1475.70 | 2.94075  | 2963.12 | 12.89961 |
| 1355.18 | 7.19777  | 1477.53 | 3.16651  | 2963.21 | 22.31480 |
| 1358.35 | 10.26850 | 1477.63 | 7.78595  | 3036.63 | 10.15379 |
| 1358.54 | 6.59680  | 1486.34 | 14.12266 | 3036.75 | 54.95916 |
| 1363.86 | 0.05687  | 1486.37 | 2.99890  | 3048.28 | 24.00514 |
| 1363.87 | 0.36512  | 1489.40 | 1.46858  | 3048.34 | 21.37254 |
| 1366.22 | 0.71340  | 1490.32 | 21.02876 | 3058.81 | 16.30968 |
| 1366.30 | 0.24949  | 1588.35 | 0.67497  | 3058.92 | 15.14970 |
| 1373.38 | 2.03506  | 1588.39 | 0.12162  | 3061.24 | 7.82787  |
| 1373.62 | 1.37726  | 1591.33 | 0.80110  | 3061.38 | 9.00487  |
| 1379.89 | 16.61329 | 1591.35 | 0.11685  | 3089.06 | 6.18488  |
| 1380.09 | 5.08042  | 1597.09 | 0.48041  | 3089.09 | 4.76092  |
| 1429.23 | 3.45900  | 1597.49 | 1.48207  | 3093.36 | 1.42433  |
| 1429.72 | 7.15214  | 1598.43 | 0.60749  | 3093.60 | 0.27603  |
| 1429.90 | 10.16881 | 1598.43 | 0.02786  | 3094.29 | 0.59343  |
| 1430.34 | 0.31729  | 1602.59 | 0.27300  | 3094.30 | 0.58859  |
| 1434.32 | 20.35394 | 1602.63 | 0.00728  | 3096.81 | 0.84543  |
| 1434.38 | 1.56696  | 1604.87 | 0.49076  | 3096.95 | 0.73550  |
| 1436.72 | 24.06196 | 1604.89 | 2.49942  | 3101.36 | 0.48533  |
| 1436.81 | 3.65057  | 1615.47 | 4.91700  | 3101.40 | 0.33488  |
| 1441.53 | 5.26154  | 1615.49 | 0.01298  | 3103.13 | 11.71221 |
| 1441.62 | 13.72100 | 1617.11 | 0.47262  | 3103.13 | 4.10443  |
| 1444.45 | 19.61909 | 1617.85 | 4.76767  | 3103.62 | 1.98004  |

| 3103.69 | 1.83767  | 3115.96 | 0.72658  | 3125.80 | 1.26637  |
|---------|----------|---------|----------|---------|----------|
| 3104.10 | 24.73850 | 3116.55 | 38.64878 | 3127.13 | 3.56114  |
| 3105.10 | 2.57701  | 3119.02 | 14.37386 | 3127.28 | 25.00497 |
| 3109.74 | 9.37736  | 3119.06 | 15.44546 | 3127.42 | 16.62534 |
| 3109.79 | 16.71071 | 3121.20 | 46.27898 | 3128.19 | 3.73696  |
| 3109.91 | 33.63825 | 3121.23 | 2.65040  | 3130.06 | 26.91451 |
| 3109.94 | 6.44533  | 3123.81 | 14.99161 | 3130.11 | 3.49038  |
| 3113.49 | 10.74179 | 3123.85 | 25.99582 | 3145.50 | 2.66906  |
| 3113.52 | 6.10222  | 3124.35 | 24.05113 | 3145.71 | 4.20168  |

### **5** References

- 1. H. J. Becher, *Fortschritte der chemischen Forschung 10*, 1968.
- 2. K. Huber, *Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules*, Springer US, New York, 1979.
- 3. R. Köppe and H. Schnöckel, J. Chem. Soc., Dalton Trans., 1992, 3393-3395.
- 4. B. Nekoueishahraki, H. W. Roesky, G. Schwab, D. Stern and D. Stalke, *Inorg. Chem.*, 2009, **48**, 9174-9179.
- 5. (a) G. Sheldrick, *Acta Crystallogr., Sect. A*, 2008, **64**, 112-122; (b) G. Sheldrick, *Acta Crystallogr., Sect. C*, 2015, **71**, 3-8.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 7. TURBOMOLE 7.0, TURBOMOLE GmbH 2015. University of Karlsruhe and Forschungszentrum Karlsruhe, 1989-2007, TURBOMOLE GmbH since 2007.
- 8. (a) A. D. Becke, *Physical Review A*, 1988, **38**, 3098-3100; (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822-8824.
- 9. (a) F. Weigend and R. Ahlrichs, *PCCP*, 2005, **7**, 3297-3305; (b) F. Weigend, F. Furche and R. Ahlrichs, *J. Chem. Phys.*, 2003, **119**, 12753-12762.