Electronic Supplementary Information

Modulation of properties with dinulear lanthanide complexes through utilizing different β -diketone co-ligands: near-infrared luminescence and magnetization dynamics

Yun-Juan Wang,^a Dong-Fang Wu,^a Jian Gou,^a Yao-Yao Duan,^a Ling Li,^a Huan-Huan Chen,^a Hong-Ling Gao^{*a,b} and Jian-Zhong Cui^{*a,b}

List of contents

Section S1 Supplementary Experimental Section

Section S2 Powder X-ray Diffraction, UV-Vis specta, Photoluminescence properties and Near-infrared luminescence spectra

Section S3 Plots of Magnetic Data

Section S4 Crystallographic Data and Continuous Shape Measures Values

^aDepartment of Chemistry, Tianjin University, Tianjin, 300354, China.

^{*} Corresponding authors, E-mail: cuijianzhong@tju.edu.cn, ghl@tju.edu.cn.

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China.

Scheme S1 The synthesis of N'-(2-hydroxy-5-methylphenyl)-pyrazine-2-carbohydrazide (H₂L).

To a solution of 2-hydroxy-5-methylbenzaldehyde (10 mmol) in ethanol was added a solution of pyrazine-2-carbohydrazide (10 mmol)¹ in ethanol (Scheme S1). The reaction mixture is stirred overnight at room temperature, a crude product was obtained, which was washed with ethanol and dried in vacuo to give the H₂L ligand as a light apricot solid. The pale apricot precipitate was heated to reflux in methanol and recrystallized to give a light yellow needle-like crystalline solid. Yield: *ca.* 80%. Elemental analysis (%), calcd for $C_{13}H_{12}N_4O_3$ (fw = 256.27): C, 60.87; H, 4.68; N, 21.85. Found: C, 61.27; H, 4.98; N, 21.44. ¹H NMR (*d*₆-DMSO, δ /ppm): 2.26(3H, C–H), 3.17(1H, C–H), 6.84, 7.13, 7.33(3H, C–H), 8.80, 8.97, 9.30(3H, C–H), 11.07(1H, N–H), 12.68 (1H, O–H) (¹H NMR spectrum of H₂L is shown in Fig. S1, ESI†)

Fig. S1 ¹H NMR spectrum (400 MHz, d_6 -DMSO) of H₂L.

Scheme S2 Powder X-ray diffraction (PXRD)

The phase purity of crystalline samples of 1-10 were characterized by powder X-ray diffraction (PXRD) at room temperature (Fig. S2, ESI[†]). The experimental peaks conform with those simulated from the single crystal X-ray diffraction data.

Fig. S2 PXRD patterns of complexes 1-6(a), 7-8(b), 9(c) and 10(d).

UV-Vis spectra

The UV-Vis absorption spectra of Dy(dbm)₃·2H₂O, Dy(acac)₃·2H₂O, Dy(TTA)₃·2H₂O, $Dy(tfa)_3 \cdot 2H_2O$, the ligand H_2L and complexes 1–10 in dichloromethane solutions were measured in the range of 200–600 nm at room temperature (Fig. S3, ESI[†]). For the ligand H₂L, three main absorption bands were observed at ca. 238, 293, and 351 nm, respectively. As fig. S3 (a) shows, for $Dy(dbm)_3$, it shows two absorption bands at *ca*. 237 and 345 nm; and 1–6 show similar absorption curves at *ca*. 238, 337 and 416 nm due to the $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transitions of ligands L^{2-} and dbm⁻. Obviously, the bands appears to be red-shifted as a whole, which is the result of the introduction of dbm⁻ with an increase in the degree of conjugation. The $Dy(acac)_3$ $2H_2O$ has two absorption bands centered at ca. 224 and 287 nm in the fig. S3 (b), and for 7-8 there are four absorption bands centered at ca. 239, 270, 298 and 397 nm (n $\rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transitions of ligands L^{2-} and acac⁻). Fig. S3 (c) displays that the absorption bands of Dy(TTA)₃·2H₂O are found at ca. 237, 275, and 341 nm and three absorption bands situated at ca.234, 271 and 340 nm for 9 $(n \to \pi^* \text{ and } \pi \to \pi^* \text{ transitions of ligands } L^2$ and TTA⁻). Analogously, two primary absorption bands centered at ca. 233 and 292 nm can be observed for Dy(tfa)₃·2H₂O, and 10 possesses three absorption bands centered at *ca*. 237, 300 and 396 nm (n $\rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transitions of ligands L^{2-} and tfa⁻). In short, the absorption band positions of 1-10 are slightly different compared to the ligand H_2L own to the influence of different β -diketone co-ligands.

Fig. S3 The UV-vis absorption spectra of Dy(dbm)₃·2H₂O, Dy(acac)₃·2H₂O, Dy(TTA)₃·2H₂O, Dy(tfa)₃·2H₂O, the ligand H₂L and complexes **1–10**.

Photoluminescence properties

The photoluminescence of complex 1 was measured in dichloromethane solution at room temperature. The emission spectrum of 1 at excitation wavelength of 335 nm reveals four characteristic emission bands of Tb³⁺, corresponding to the ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ (495nm), ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (536nm), ${}^{5}D_{4} \rightarrow {}^{7}F_{4}$ (580nm), ${}^{5}D_{4} \rightarrow {}^{7}F_{3}$ (605nm), respectively. Among them, the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition is the strongest (Fig. S4, ESI<u>+</u>).

Fig. S4 Room-temperature photoluminescence spectrum of complex 1 in dichloromethane solution.

Fig. S5 (a) Excitation spectrum ($\lambda em = 1528 \text{ nm}$) and (b) emission spectrum of complex 4 ($\lambda ex = 375 \text{ nm}$) in the solid state.

Fig. S6 (a) Excitation spectrum ($\lambda em = 975 \text{ nm}$) and (b) emission spectrum of complex 5 ($\lambda ex = 510 \text{ nm}$) in the solid state.

Fig. S7 (a) Excitation spectrum ($\lambda em = 1528 \text{ nm}$) and (b) emission spectrum of complex 8 ($\lambda ex = 370 \text{ nm}$) in the solid state.

Fig. S8 Temperature dependence of χ' and χ'' for 2 (a) and 7(b) in a zero static field and an oscillating field of 3 Oe (the solid lines connecting the data points are guides for the eye).

Fig. S9 Frequency dependency of the ac susceptibility was measured on **2** (a,b), **7**(c,d), **9**(e,f) and **10**(g,h) under the applied field from 200 to 4000 Oe at 2.0 K (the solid lines connecting the data points are guides for the eye).

Fig. S10 Field dependence of the magnetic relaxation time (τ), at 2 K for 2 (a), 7(b), 9(c) and 10(d).

Fig. S11 Temperature dependence of χ' and χ'' for 2 ($H_{dc} = 3000$ Oe, a and b), 7 ($H_{dc} = 1500$ Oe, c and d), 9 ($H_{dc} = 2000$ Oe, e and f) and 10 ($H_{dc} = 1500$ Oe, g and h) in an oscillating field of 3 Oe. (the solid lines connecting the data points are guides for the eye).

Fig. S12 Frequency dependence of χ' and χ'' for 2 (H_{dc} = 3000 Oe, a and b), 7 (H_{dc} = 1500 Oe, c and d), 9 (H_{dc} = 2000 Oe, e and f) and 10 (H_{dc} = 1500 Oe, g and h) in an oscillating field of 3 Oe. (the solid lines connecting the data points are guides for the eye).

Fig. S13 The $ln(\tau)$ versus l/T plots of 2(a, H_{dc} = 3000 Oe), 7(b, H_{dc} = 1500 Oe), 9(c, H_{dc} = 2000 Oe) and 10(d) (H_{dc} = 1500 Oe); the red lines correspond to the best fit.

Complex	1	2	3	4	5
Formula	$C_{58}H_{50}N_8O_{10}Tb_2$	$C_{58}H_{50}N_8O_{10}Dy_2\\$	$C_{58}H_{50}N_8O_{10}Ho_2$	$C_{58}H_{50}N_8O_{10}Er_2$	$C_{58}H_{50}N_8O_{10}Yb_2$
Mr(g.mol ⁻¹)	1336.9	1344.06	1348.92	1353.58	1365.14
Temperature(K)	113(2)	113(2)	113(2)	113(2)	113(2)
Wavelength(Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pbcn	Pbcn	Pbcn	Pbcn	Pbcn
a(Å)	22.133(4)	22.136(4)	22.114(4)	22.064(4)	22.018(4)
b(Å)	9.924(2)	9.903(2)	9.879(2)	9.869(2)	9.815(2)
c(Å)	24.477(5)	24.489(5)	24.526(5)	24.538(5)	24.552(5)
a(deg)	90	90	90	90	90
$\beta(deg)$	90	90	90	90	90
γ(deg)	90	90	90	90	90
Volume(Å3)	5376.3(19)	5368.3(19)	5357.9(19)	5343.4(19)	5306.1(18)
Ζ	4	4	4	4	4
Calculated density(Mg m ⁻³)	1.652	1.663	1.672	1.683	1.709
Abs coeff(mm ⁻¹)	2.677	2.83	3.000	3.187	3.572
F(000)	2656	2664	2672	2680	2696
Crystal size(mm ³)	0.100x0.080	0.200x0.180	0.200x0.180	0.200x0.180	0.100x0.060

Table S1 Crystal data and structure refinement for complexes 1-5

	x0.080	x0.120	x0.120	x0.120	x0.060
θ range(°)	2.880-25.018	2.801-25.018	1.842-25.019	1.660-25.017	1.659-27.898
Limiting indices	-26<=h<=26	-26<=h<=26	-26<=h<=26	-26<=h<=26	-28<=h<=28
	-11<=k<=11	-11<=k<=11	-11<=k<=11	-11<=k<=11	-12<=k<=12
	-29<=l<=29	-27<=l<=29	-25<=l<=29	-29<=l<=29	-32<=l<=26
Reflections	49077	40835	40550	48605	48474
collected					
Independent	4719[R(int)	4717[R(int)	4721[R(int)	4681[R(int)	6301[R(int)
reflection	=0.0843]	=0.0738]	=0.0794]	=0.0923]	=0.1118]
Completeness	99.50%	99.60%	99.90%	99.20%	99.90%
Max.and min.	1 and 0.8188	1 and 0.8057	1 and 0.8318	1 and 0.8696	1 and 0.7919
transmission					
Data/restraints	4719/12/355	4717/0/354	4721/12/354	4681/0/355	6301/24/355
/parameters					
GoF on F2	1.047	1.066	1.118	1.090	1.301
Final R	$R_1^a = 0.0359,$	$R_1^a = 0.0358,$	$R_1^a = 0.0338$,	$R_1^a = 0.0412,$	$R_1^a = 0.0833,$
indices[I>2σ(I)]	$wR_2^b = 0.0851$	$wR_2^b = 0.0903$	$wR_2^{b} = 0.0677$	$wR_2^{b} = 0.0897$	$wR_2^b = 0.1397$
R indices	$R_1 = 0.0489,$	$R_1 = 0.0465$,	$R_1 = 0.0506$,	$R_1 = 0.0610$,	$R_1 = 0.1002,$
(all data)	$wR_2 = 0.0908$	$wR_2 = 0.0966$	$wR_2 = 0.0745$	$wR_2 = 0.0979$	$wR_2 = 0.1455$
Largest diff.peak	1.886 and	1.525 and	1.90 and	1.859 and	1.97 and
and hole(eÅ-3)	-0.875	-0.921	-0.82	-0.909	-1.68
${}^{a}R_{1} = \sum (\mathbf{F}_{o} - \mathbf{F}_{o}) / \sum \mathbf{F}_{o} . \ {}^{b}wR_{2} = [\sum w(\mathbf{F}_{o} ^{2} - \mathbf{F}_{o} ^{2})^{2} / \sum w(\mathbf{F}_{o}^{-2})^{2}]^{1/2}$					

Table S2 Crystal data and structure refinement for complexes 6-10

Complex	6	7	8	9	10
Formula	$C_{58}H_{50}N_8O_{10}Lu_2$	$C_{40}H_{46}N_8O_{10}Dy_2\\$	$C_{40}H_{46}N_8O_{10}Er_2$	$C_{46}H_{38}Cl_4F_6N_8O_{10}S_2Dy_2\\$	$C_{40}H_{44}F_6N_8O_{12}Dy_2\\$
Mr(g.mol ⁻¹)	1369.00	1123.85	1133.37	1507.76	1267.83
Temperature(K)	113(2)	113(2)	113(2)	113(2)	113(2)
Wavelength(Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	Pbcn	Pī	Pī	Pī	Pī
a(Å)	21.973(4)	9.4103(19)	9.4070(19)	10.583(2)	9.2010(18)
b(Å)	9.826(2)	11.313(2)	11.300(2)	11.808(2)	10.889(2)
c(Å)	24.585(5)	11.787(2)	11.706(2)	12.599(3)	12.038(2)
a(deg)	90	85.53(3)	85.25(3)	113.07(3)	73.38(3)
β(deg)	90	68.11(3)	68.20(3)	104.13(3)	85.05(3)
γ(deg)	90	67.45(3)	67.24(3)	102.28(3)	86.60(3)
Volume(Å ³)	5308.5(18)	1072.2(5)	1062.7(5)	1318.1(6)	1150.6(4)
Z	4	1	1	1	1
Calculated density(Mg	1.713	1.740	1.771	1.899	1.83
m ⁻³)					
Abs coeff(mm ⁻¹)	3.766	3.523	3.987	3.180	3.315
F(000)	2704	554	558	736	622

Crystal size(mm ³)	0.200 x 0.180 x	0.200x0.180x0.120	0.200x0.180x0.1	0.200x0.180x0.120	0.200x0.180x0.120
	0.120		20		
θ range(°)	1.854 - 25.017	1.867-27.931	2.532 - 27.843	1.998-25.020	1.770-25.020
Limiting indices	-26<=h<=25	-12<=h<=12	-12<=h<=11	-12<=h<=12	-10<=h<=10
	-11<=k<=11	-14<=k<=14	-14<=k<=14	-14<=k<=14	-12<=k<=12 -
	-28<=l<=29	-15<=l<=15	-15<=l<=15	-14<=]<=14	14<=l<=14
Reflections collected	32676	12976	12448	12858	11171
Independent reflection	4680 [R(int)	5103[R(int)	5000 [R(int)	4626 [R(int)	4051[R(int)
	= 0.0721]	= 0.0362]	= 0.0412]	= 0.0391]	= 0.0496]
Completeness	99.9 %	99.90%	99.3%	99.7%	99.90%
Max.and min.	1 and 0.6301	1 and 0.8323	1 and 0.6767	1 and 0.8529	1 and 0.4974
transmission					
Data/restraints/parame	4680 / 0 / 354	5103 /0 / 275	5000 / 0 / 275	4626 / 0 / 355	4051 / 18 / 312
ters					
GoF on F2	1.051	1.072	1.002	1.088	1.098
Final R	$R_1^a = 0.0548,$	$R_1^a = 0.0262,$	$R1^a = 0.0257,$	$R_1^a = 0.0386,$	$R1^a = 0.0298$,
indices[I> $2\sigma(I)$]	$wR_2^b = 0.1760$	$wR_2^b = 0.0597$	$wR_2^{b} = 0.0653$	$wR_2^b = 0.1105$	$wR_2^b = 0.0745$
R indices(all data)	$R_1 = 0.0630,$	$R_1 = 0.0299,$	$R_1 = 0.0277,$	$R_1 = 0.0440,$	$R_1 = 0.0345$,
	$wR_2 = 0.1889$	$wR_2 = 0.0613$	$wR_2 = 0.0709$	$wR_2 = 0.1387$	$wR_2 = 0.0875$
Largest diff.peak and	1.427 and -1.549	1.143 and	0.972 and -1.659	1.499 and	1.326 and
hole(eÅ-3)		-1.584		-1.734	-1.024
${}^{a}R_{1} = \sum (\mathbf{F}_{o} - \mathbf{F}_{c}) / \sum \mathbf{F}_{o} . {}^{b}wR_{2} = [\sum w(\mathbf{F}_{o} ^{2} - \mathbf{F}_{c} ^{2}) / \sum w(\mathbf{F}_{o}^{2})^{2}]^{1/2}$					

Table S3 The important bond lengths (Å) and angles (°) for 1-10 $\,$

		-)	•	
Complexes	The range of Ln–O bond	Average Ln–O	The distance of	The Ln–O–Ln
	lengths / Å	bond lengths	Ln…Ln / Å	bond angles / $^{\circ}$
1	2.219(3) - 2.406(3)	2.349(8)	3.9834(7)	112.80(12)
2	2.201(3) - 2.402(3)	2.339(5)	3.9733(7)	113.01(12)
3	2.207(3) - 2.383(3)	2.329(1)	3.9603(7)	113.30(12)
4	2.198(4) - 2.373(4)	2.317(2)	3.9487(7)	113.38(15)
5	2.175(5) - 2.358(6)	2.295(7)	3.9244(9)	114.2(2)
6	2.176(6) - 2.351(6)	2.294(3)	3.9139(9)	114.2(2)
7	2.202(2) - 2.433(2)	2.343(9)	3.9526(11)	112.30(8)
8	2.196(2) - 2.395(3)	2.313(9)	3.9228(11)	112.75(9)
9	2.196(5) - 2.414(5)	2.351(3)	3.992(2)	114.46(17)
10	2.173(3) - 2.458(3)	2.338(2)	3.9108(10)	111.70(12)

Table S4	The selected	bond lengtl	hs (Å) and	d angles (°) for 2

able ST the selected a	in the second se		
Dy(1)-O(2)	2.201(3)	Dy(1)-O(3)	2.326(3)
Dy(1)-O(4)	2.355(3)	Dy(1)-O(1)#1	2.363(3)
Dy(1)-O(5)	2.388(3)	Dy(1)-O(1)	2.402(3)
Dy(1)-N(4)	2.419(4)	Dy(1)-N(1)#1	2.575(4)
Dy(1)-Dy(1)#1	3.9733(7)		

Dy(1)#1-O(1)-Dy(1)	113.01(12)		
O(2)-Dy(1)-O(3)	76.23(12)	O(2)-Dy(1)-O(4)	131.42(11)
O(3)-Dy(1)-O(4)	71.10(11)	O(2)-Dy(1)-O(1)#1	146.54(11)
O(3)-Dy(1)-O(1)#1	112.04(11)	O(4)-Dy(1)-O(1)#1	80.27(10)
O(2)-Dy(1)-O(5)	75.77(12)	O(3)-Dy(1)-O(5)	142.35(11)
O(4)-Dy(1)-O(5)	146.17(10)	O(1)#1-Dy(1)-O(5)	80.17(11)
O(2)-Dy(1)-O(1)	126.28(11)	O(3)-Dy(1)-O(1)	143.15(11)
O(4)-Dy(1)-O(1)	72.57(10)	O(1)#1-Dy(1)-O(1)	66.99(12)
O(5)-Dy(1)-O(1)	74.45(11)	O(2)-Dy(1)-N(4)	74.01(12)
O(3)-Dy(1)-N(4)	101.50(11)	O(4)-Dy(1)-N(4)	78.41(12)
O(1)#1-Dy(1)-N(4)	131.30(11)	O(5)-Dy(1)-N(4)	94.41(12)
O(1)-Dy(1)-N(4)	64.98(11)	O(2)-Dy(1)-N(1)#1	86.75(12)
O(3)-Dy(1)-N(1)#1	78.51(12)	O(4)-Dy(1)-N(1)#1	119.61(12)
O(1)#1-Dy(1)-N(1)#1	64.66(11)	O(5)-Dy(1)-N(1)#1	75.27(12)
O(1)-Dy(1)-N(1)#1	126.11(11)	N(4)-Dy(1)-N(1)#1	160.01(12)
O(2)-Dy(1)-Dy(1)#1	148.63(9)	O(3)-Dy(1)-Dy(1)#1	134.98(8)
O(4)-Dy(1)-Dy(1)#1	73.65(7)	O(1)#1-Dy(1)-Dy(1)#1	33.80(7)
O(5)-Dy(1)-Dy(1)#1	74.72(8)	O(1)-Dy(1)-Dy(1)#1	33.18(7)
N(4)-Dy(1)-Dy(1)#1	97.86(8)	N(1)#1-Dy(1)-Dy(1)#1	95.84(8)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1

Table S5 The selected bond lengths (Å) and angles (°) for 7

uble 55 The Selected Fold	tenguis (11) and angles		
Dy(1)-O(2)#1	2.202(2)	Dy(1)-O(4)	2.321(2)
Dy(1)-O(3)	2.347(2)	Dy(1)-O(1)	2.368(2)
Dy(1)-O(1)#1	2.391(2)	Dy(1)-O(5)	2.433(2)
Dy(1)-N(4)#1	2.459(3)	Dy(1)-N(1)	2.548(2)
Dy(1)-Dy(1)#1	3.9526(11)		
Dy(1)-O(1)-Dy(1)#1	112.30(8)		
O(2)#1-Dy(1)-O(4)	75.74(9)	O(2)#1-Dy(1)-O(3)	133.02(8)
O(4)-Dy(1)-O(3)	71.71(8)	O(2)#1-Dy(1)-O(1)	144.05(7)
O(4)-Dy(1)-O(1)	118.68(8)	O(3)-Dy(1)-O(1)	82.25(7)
O(2)#1-Dy(1)-O(1)#1	122.74(8)	O(4)-Dy(1)-O(1)#1	142.18(8)
O(3)-Dy(1)-O(1)#1	72.59(7)	O(1)-Dy(1)-O(1)#1	67.70(8)
O(2)#1-Dy(1)-O(5)	74.98(8)	O(4)-Dy(1)-O(5)	140.66(8)
O(3)-Dy(1)-O(5)	146.92(7)	O(1)-Dy(1)-O(5)	74.88(8)
O(1)#1-Dy(1)-O(5)	76.72(7)	O(2)#1-Dy(1)-N(4)#1	73.51(8)
O(4)-Dy(1)-N(4)#1	96.21(8)	O(3)-Dy(1)-N(4)#1	77.33(8)
O(1)-Dy(1)-N(4)#1	131.09(7)	O(1)#1-Dy(1)-N(4)#1	63.89(8)
O(5)-Dy(1)-N(4)#1	100.04(8)	O(2)#1-Dy(1)-N(1)	90.60(8)
O(4)-Dy(1)-N(1)	76.04(8)	O(3)-Dy(1)-N(1)	112.73(8)
O(1)-Dy(1)-N(1)	64.54(7)	O(1)#1-Dy(1)-N(1)	130.33(7)

O(5)-Dv(1)-N(1)	78 57(8)	N(4)#1- $Dv(1)$ - $N(1)$	163 73(8)
O(2)#1-Dy(1)-Dy(1)#1	144.31(6)	O(4)-Dv(1)-Dv(1)#1	139.95(6)
O(3)-Dv(1)-Dv(1)#1	74 83(6)	O(1)-Dv(1)-Dv(1)#1	34 04(5)
O(1)#1-Dv(1)-Dv(1)#1	33 67(5)	O(5)-Dv(1)-Dv(1)#1	72.82(6)
N(4)#1-Dv(1)-Dv(1)#1	97 33(6)	N(1)-Dy(1)-Dy(1)#1	97 70(6)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+1

Table S6 The selected bond lengths (Å) and angles (°) for ${\bf 9}$

Dy(1)-O(2)	2.196(5)	Dy(1)-O(1)#1	2.366(5)
Dy(1)-O(4)	2.372(5)	Dy(1)-O(3)	2.375(5)
Dy(1)-O(1)	2.382(4)	Dy(1)-O(5)	2.414(5)
Dy(1)-N(4)	2.455(6)	Dy(1)-N(1)#1	2.556(6)
Dy(1)-Dy(1)#1	3.992(2)		
Dy(1)#1-O(1)-Dy(1)	114.46(17)		
O(2)-Dy(1)-O(1)#1	141.94(17)	O(2)-Dy(1)-O(4)	132.31(18)
O(1)#1-Dy(1)-O(4)	83.69(17)	O(2)-Dy(1)-O(3)	73.33(19)
O(1)#1-Dy(1)-O(3)	118.55(17)	O(4)-Dy(1)-O(3)	70.48(17)
O(2)-Dy(1)-O(1)	128.07(18)	O(1)#1-Dy(1)-O(1)	65.54(18)
O(4)-Dy(1)-O(1)	74.31(17)	O(3)-Dy(1)-O(1)	143.53(17)
O(2)-Dy(1)-O(5)	75.74(18)	O(1)#1-Dy(1)-O(5)	74.65(17)
O(4)-Dy(1)-O(5)	148.34(17)	O(3)-Dy(1)-O(5)	140.50(17)
O(1)-Dy(1)-O(5)	75.78(17)	O(2)-Dy(1)-N(4)	74.09(18)
O(1)#1-Dy(1)-N(4)	129.45(16)	O(4)-Dy(1)-N(4)	85.16(18)
O(3)-Dy(1)-N(4)	103.40(19)	O(1)-Dy(1)-N(4)	63.96(16)
O(5)-Dy(1)-N(4)	90.97(18)	O(2)-Dy(1)-N(1)#1	87.10(18)
O(1)#1-Dy(1)-N(1)#1	64.59(17)	O(4)-Dy(1)-N(1)#1	111.52(18)
O(3)-Dy(1)-N(1)#1	74.69(19)	O(1)-Dy(1)-N(1)#1	128.55(17)
O(5)-Dy(1)-N(1)#1	79.83(18)	N(4)-Dy(1)-N(1)#1	160.7(2)
O(2)-Dy(1)-Dy(1)#1	146.56(14)	O(1)#1-Dy(1)-Dy(1)#1	32.89(11)
O(4)-Dy(1)-Dy(1)#1	76.91(12)	O(3)-Dy(1)-Dy(1)#1	139.73(13)
O(1)-Dy(1)-Dy(1)#1	32.65(11)	O(5)-Dy(1)-Dy(1)#1	72.34(12)
N(4)-Dy(1)-Dy(1)#1	96.59(13)	N(1)#1-Dy(1)-Dy(1)#1	96.75(14)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+2

Table S7 The selected bond lengths (Å) and angles (°) for 10

Dy(1)-O(1)#1	2.173(3)	Dy(1)-O(4)	2.313(4)
Dy(1)-O(2)	2.351(3)	Dy(1)-O(3)	2.357(3)
Dy(1)-O(2)#1	2.375(3)	Dy(1)-O(5)	2.458(3)
Dy(1)-N(1)#1	2.487(4)	Dy(1)-N(3)	2.557(4)
Dy(1)-Dy(1)#1	3.9108(10)		
Dy(1)-O(2)-Dy(1)#1	111.70(12)		

O(1)#1-Dy(1)-O(4)	115.01(14)	O(1)#1-Dy(1)-O(2)	149.06(12)
O(4)-Dy(1)-O(2)	90.82(12)	O(1)#1-Dy(1)-O(3)	82.39(13)
O(4)-Dy(1)-O(3)	72.33(13)	O(2)-Dy(1)-O(3)	90.23(11)
O(1)#1-Dy(1)-O(2)#1	134.14(12)	O(4)-Dy(1)-O(2)#1	71.46(12)
O(2)-Dy(1)-O(2)#1	68.30(12)	O(3)-Dy(1)-O(2)#1	137.17(12)
O(1)#1-Dy(1)-O(5)	81.58(13)	O(4)-Dy(1)-O(5)	140.64(12)
O(2)-Dy(1)-O(5)	88.92(11)	O(3)-Dy(1)-O(5)	147.02(12)
O(2)#1-Dy(1)-O(5)	71.97(12)	O(1)#1-Dy(1)-N(1)#1	73.96(14)
O(4)-Dy(1)-N(1)#1	74.47(13)	O(2)-Dy(1)-N(1)#1	132.39(12)
O(3)-Dy(1)-N(1)#1	125.32(13)	O(2)#1-Dy(1)-N(1)#1	64.09(12)
O(5)-Dy(1)-N(1)#1	76.91(13)	O(1)#1-Dy(1)-N(3)	84.86(13)
O(4)-Dy(1)-N(3)	137.04(12)	O(2)-Dy(1)-N(3)	64.27(12)
O(3)-Dy(1)-N(3)	73.35(13)	O(2)#1-Dy(1)-N(3)	122.61(12)
O(5)-Dy(1)-N(3)	76.65(12)	N(1)#1-Dy(1)-N(3)	148.15(13)
O(1)#1-Dy(1)-Dy(1)#1	159.79(10)	O(4)-Dy(1)-Dy(1)#1	79.37(9)
O(2)-Dy(1)-Dy(1)#1	34.35(8)	O(3)-Dy(1)-Dy(1)#1	116.60(9)
O(2)#1-Dy(1)-Dy(1)#1	33.96(7)	O(5)-Dy(1)-Dy(1)#1	78.50(8)
N(1)#1-Dy(1)-Dy(1)#1	98.04(10)	N(3)-Dy(1)-Dy(1)#1	93.80(9)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z

1-10						
Complex	D_{4d} SAPR	D_{2d} TDD	C_{2v} JBTPR	C_{2v} BTPR		
1	2.668	1.405	3.342	2.157		
2	2.643	1.344	3.321	2.142		
3	2.598	1.336	3.251	2.094		
4	2.593	1.313	3.202	2.069		
5	2.631	1.233	3.150	2.030		
6	2.515	1.170	3.038	1.926		
7	2.059	2.407	3.577	2.377		
8	2.006	2.320	3.428	2.270		
9	3.215	2.618	3.604	2.311		
10	2.228	2.284	2.045	1.467		

Table S8 The continuous symmetry measurement value calculated by SHAPE 2.0 for complexes

Table S9 The datapoints used for the construction of $ln\tau$ versus l/T curves for complexes 9 and 10.

Complexes 9 ($H_{dc} = 0$ Oe)		Complexes 10 ($H_{dc} = 0$ Oe)		
lnτ	<i>1/T</i>	lnτ	<i>1/T</i>	
-8.25044	0.2	-5.3613	0.25	
-8.35306	0.18182	-5.87036	0.2	
-8.44253	0.16667	-6.13459	0.18182	
-8.55049	0.15385	-6.39157	0.16667	

-8.68331	0.14286	-6.63566	0.15385
-8.76812	0.13699	-6.86345	0.14286
-8.85868	0.13158	-7.07122	0.13333
-8.95991	0.12658	-7.28336	0.125
-9.05817	0.12195	-7.50203	
-9.16403	0.11765	1765 -7.69708	
-9.28743	0.11364	-7.88759	0.10526
-9.41403	0.10989	-8.09285	0.1
-9.53638	0.10638	-8.30554	0.09524
-9.67853	0.10309	-8.5447	0.09091
-9.82758	0.1	-8.78945	0.08696
-9.98308	0.09709	-9.055	0.08333
-10.16732	0.09434	-9.33042	0.08
-10.34166	0.09174	-9.62742	0.07692
-10.53852	-10.53852 0.08929		0.07407
-10.74871	0.08696	-10.24038	0.07143
		-10.55663	0.06897
		-10.86225	0.06667

Compl	exes 2	Compl	exes 7	Compl	exes 9	Comple	exes 10
$(H_{\rm dc} = 3)$	000 Oe)	$(H_{\rm dc} = 1)$	500 Oe)	$(H_{\rm dc} = 2000 \ {\rm Oe})$		$(H_{\rm dc} = 1500 \ {\rm Oe})$	
lnτ	1/T	lnτ	1/T	lnτ	1/T	lnτ	1/T
-2.01471	0.5	-6.82892	0.25	-6.54848	0.2	-4.7447	0.25
-5.32629	0.4	-7.06936	0.22222	-6.78708	0.18182	-5.19744	0.22222
-6.77578	0.33333	-7.36164	0.2	-7.06108	0.16667	-5.57268	0.2
-7.72885	0.28571	-7.70301	0.18182	-7.35519	0.15385	-5.94049	0.18182
-8.27913	0.25	-8.05425	0.16667	-7.64419	0.14286	-6.25531	0.16667
-8.66632	0.22222	-8.4114	0.15385	-7.94903	0.13333	-6.5716	0.15385
-8.97707	0.2	-8.7553	0.14286	-8.25475	0.125	-6.85172	0.14286
-9.28991	0.18182	-9.08482	0.13333	-8.55624	0.11765	-7.11727	0.13333
-9.49188	0.16667	-9.40335	0.125	-8.86882	0.11111	-7.37388	0.125
-10.03417	0.15385	-9.70962	0.11765	-9.18863	0.10526	-7.61239	0.11765
-10.54811	0.14286	-10.01044	0.11111	-9.51982	0.1	-7.84974	0.11111
		-10.31262	0.10526	-9.86402	0.09524	-8.08097	0.10526
		-10.62123	0.1	-10.22097	0.09091	-8.3125	0.1
		-10.94756	0.09524	-10.5863	0.08696	-8.55454	0.09524
						-8.80868	0.09091
						-9.0773	0.08696
						-9.36573	0.08333
						-9.67829	0.08
						-10.0306	0.07692
						-10.43863	0.07407
						-10.77683	0.07143

			-11.11099	0.06897

(a) H. Tian, L. Zhao, Y. N. Guo, Y. Guo, J. Tang and Z. Liu, *Chem. Commun.*, 2012, 48, 708;
(b) H. Tian, S. S. Bao and L. M. Zheng, *Chem. Commun.*,2016, 52, 2314;
(c) H. Tian, Lang. *Zhao and J. Tang, Cryst. Growth Des.*, 2018, 18, 1173.