Various Cd(II) Coordination Polymers Induced by Carboxylates:

Multi-functional Detections for Fe³⁺, Anions, Aspartic Acids and

Bovine Serum Albumin

Guocheng Liua#, Yan Lia#, Jie Chia, Na Xua, Xiuli Wanga,*, Hongyan Lina, Baokuan Chenb,* and Jianrong Lic,*

^aCollege of Chemistry and Chemical Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China

^bCollege of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, P. R.China.

^cFood Safety Key Lab of Liaoning Province, Jinzhou 121013, P. R. China.

#Theses authors contributed equally to this work.

Supporting information

Table S1 Selected bond distances (Å) and angles (°) for 1.					
1					
Cd(1)–O(1)	2.301(3)	Cd(1)–O(3)	2.316(3)		
Cd(1)–O(4)A	2.305(3)	Cd(1)–N(1)	2.337(3)		
Cd(1)–O(2)B	2.308(3)	Cd(1)–N(2)C	2.342(3)		
O(1)-Cd(1)-O(4)A	174.63(10)	O(2)B-Cd(1)-N(1)	80.81(11)		
O(1)-Cd(1)-O(2)B	92.19(9)	O(3)-Cd(1)-N(1)	77.53(10)		
O(4)A-Cd(1)-O(2)B	86.39(9)	O(1)-Cd(1)-N(2)C	89.98(10)		
O(1)-Cd(1)-O(3)	86.66(9)	O(4)A-Cd(1)-N(2)C	95.35(10)		
O(4)A-Cd(1)-O(3)	92.74(9)	O(2)B-Cd(1)-N(2)C	98.45(10)		
O(2)B-Cd(1)-O(3)	158.33(10)	O(3)-Cd(1)-N(2)C	103.19(10)		
O(1)-Cd(1)-N(1)	88.44(11)	N(1)-Cd(1)-N(2)C	178.23(11)		
O(4)A-Cd(1)-N(1)	86.22(11)				

Symmetry codes: A: -*x* + 2, -*y*, -*z*; B: -*x* + 1, -*y*, -*z*; C: *x*, *y* + 1, *z*

^{*} Corresponding author. Tel.: +86-416-3400160

E-mail address: wangxiuli@bhu.edu.cn (X.-L. Wang)

E-mail address: chenbaokuan@lnpu.edu.cn (B.-K. Chen)

E-mail address: lijianrong@zjgsu.edu.cn (J.-R. Li)

2					
Cd(1)–O(1W)	2.322(4)	Cd(2)–O(2W)	2.337(4)		
Cd(1)–N(3)	2.327(4)	Cd(2)–N(2)	2.313(4)		
Cd(1)–N(4)	2.347(4)	Cd(2)-O(8)A	2.443(4)		
Cd(1)–O(2)	2.381(3)	Cd(2)–O(4)	2.454(3)		
Cd(1)–O(6)	2.427(4)	Cd(2)–N(1)	2.349(5)		
Cd(1)–O(7)	2.429(4)	Cd(2)–O(3)	2.397(3)		
Cd(1)–O(1)	2.459(3)	Cd(2)–O(5)	2.413(4)		
O(1W)-Cd(1)-N(3)	88.05(14)	N(2)-Cd(2)-O(2W)	88.80(15)		
O(1W)-Cd(1)-N(4)	85.47(13)	N(2)-Cd(2)-N(1)	170.48(16)		
N(3)-Cd(1)-N(4)	165.64(14)	O(2W)-Cd(2)-N(1)	84.98(16)		
O(1W)-Cd(1)-O(2)	150.24(12)	N(2)-Cd(2)-O(3)	93.50(14)		
N(3)-Cd(1)-O(2)	90.35(15)	O(2W)-Cd(2)-O(3)	150.73(12)		
N(4)-Cd(1)-O(2)	88.95(14)	N(1)-Cd(2)-O(3)	88.46(14)		
O(1W)-Cd(1)-O(6)	130.05(15)	N(2)Cd(2)O(5)	94.64(17)		
N(3)-Cd(1)-O(6)	90.18(15)	O(2W)-Cd(2)-O(5)	131.06(14)		
N(4)-Cd(1)-O(6)	103.80(14)	N(1)-Cd(2)-O(5)	94.89(18)		
O(2)–Cd(1)–O(6)	79.65(13)	O(3)–Cd(2)–O(5)	77.88(13)		
O(1W)-Cd(1)-O(7)	78.12(15)	N(2)-Cd(2)-O(8)A	98.16(15)		
N(3)-Cd(1)-O(7)	99.98(17)	O(2W)-Cd(2)-O(8)A	77.49(13)		
N(4)-Cd(1)-O(7)	91.21(16)	N(1)-Cd(2)-O(8)A	87.54(16)		
O(2)-Cd(1)-O(7)	131.28(14)	O(3)-Cd(2)-O(8)A	130.76(12)		
O(6)-Cd(1)-O(7)	53.12(16)	O(5)-Cd(2)-O(8)A	53.67(14)		
O(1W)-Cd(1)-O(1)	96.82(13)	N(2)-Cd(2)-O(4)	90.50(14)		
N(3)-Cd(1)-O(1)	84.90(14)	O(2W)-Cd(2)-O(4)	97.05(13)		
N(4)-Cd(1)-O(1)	83.17(14)	N(1)-Cd(2)-O(4)	83.13(15)		
O(2)-Cd(1)-O(1)	53.46(11)	O(3)-Cd(2)-O(4)	53.79(12)		
O(6)-Cd(1)-O(1)	132.71(14)	O(5)-Cd(2)-O(4)	131.63(13)		
O(7)-Cd(1)-O(1)	172.76(16)	O(8)A-Cd(2)-O(4)	169.60(15)		

 Table S2 Selected bond distances (Å) and angles (°) for 2.

Symmetry codes: A: x, y + 1, z + 1

 Table S3 Selected bond distances (Å) and angles (°) for 3.

3					
Cd(1)–N(1)	2.324(3)	Cd(1)-O(4)A	2.392(3)		
Cd(1)-O(3)A	2.351(3)	Cd(1)-O(1)	2.500(3)		
Cd(1)–N(3)B	2.358(3)	Cd(1)-O(5)C	2.559(3)		
Cd(1)-O(2)	2.363(3)				
N(1)-Cd(1)-O(3)A	100.28(12)	O(3)A-Cd(1)-O(1)	84.38(10)		
N(1)-Cd(1)-N(3)B	167.60(11)	N(3)B-Cd(1)-O(1)	87.30(11)		
O(3)A-Cd(1)-N(3)B	91.59(12)	O(2)-Cd(1)-O(1)	53.44(9)		
N(1)-Cd(1)-O(2)	86.92(10)	O(4)A-Cd(1)-O(1)	138.26(9)		
O(3)A-Cd(1)-O(2)	137.42(10)	N(1)-Cd(1)-O(5)C	89.84(10)		
N(3)B-Cd(1)-O(2)	81.89(10)	O(3)A-Cd(1)-O(5)C	136.34(10)		
N(1)-Cd(1)-O(4)A	90.19(10)	N(3)B-Cd(1)-O(5)C	83.93(9)		
O(3)A-Cd(1)-O(4)A	54.54(10)	O(2)-Cd(1)-O(5)C	85.01(9)		
N(3)B-Cd(1)-O(4)A	99.68(10)	O(4)A-Cd(1)-O(5)C	83.37(9)		
O(2)-Cd(1)-O(4)A	168.04(9)	O(1)-Cd(1)-O(5)C	138.37(8)		
N(1)-Cd(1)-O(1)	90.31(11)				

Symmetry codes: A: x, y + 1, z + 1; B: x - 1, y, z + 1; C: x, -y + 1/2, z + 1/2

4					
Cd(1)–O(3)	2.292(3)	Cd(1)–O(5)A	2.375(3)		
Cd(1)–N(2)	2.297(4)	Cd(1)–O(2)A	2.514(3)		
Cd(1)–N(1)	2.324(4)	Cd(1)–O(1)	2.368(3)		
O(3)–Cd(1)–N(2)	102.23(13)	O(3)-Cd(1)-O(2)A	135.59(11)		
O(3)-Cd(1)-N(1)	93.32(13)	N(2)-Cd(1)-O(2)A	81.84(12)		
N(2)–Cd(1)–N(1)	124.07(13)	N(1)-Cd(1)-O(2)A	88.39(12)		
N(2)Cd(1)O(1)	83.84(14)	O(1)-Cd(1)-O(2)A	100.33(12)		
O(3)–Cd(1)–O(1)	124.07(13)	O(5)A-Cd(1)-O(2)A	53.29(10)		
N(1)Cd(1)O(1)	85.93(14)	O(4)-Cd(1)-N(2)	101.70(13)		
O(3)-Cd(1)-O(5)A	82.39(11)	O(4)–Cd(1)–N(1)	86.44(13)		
N(2)Cd(1)O(5)A	88.97(13)	O(4)–Cd(1)–O(1)	72.61(13)		
N(1)-Cd(1)-O(5)A	94.98(13)	O(3)-Cd(1)-O(5)A	133.90(11)		
O(1)-Cd(1)-O(5)A	153.48(12)				
Symmetry codes: A: $x - 1$, y , z					

Table S4 Selected bond distances (Å) and angles (°) for 4.

5					
2.220(2)	Cd(1)–N(2)	2.332(2)			
2.2402(18)	Cd(1)–N(1)C	2.345(2)			
2.2984(17)	Cd(1)–O(4)B	2.5239(18)			
118.51(8)	O(3)B-Cd(1)-N(1)C	85.83(7)			
90.08(7)	N(2)-Cd(1)-N(1)C	167.23(8)			
150.15(7)	O(2)A-Cd(1)-O(4)B	144.19(7)			
98.46(9)	O(1)-Cd(1)-O(4)B	96.79(7)			
83.60(8)	O(3)B-Cd(1)-O(4)B	54.12(6)			
101.51(7)	N(2)-Cd(1)-O(4)B	90.78(7)			
91.90(9)	N(1)C-Cd(1)-O(4)B	85.07(7)			
84.90(7)					
	2.220(2) 2.2402(18) 2.2984(17) 118.51(8) 90.08(7) 150.15(7) 98.46(9) 83.60(8) 101.51(7) 91.90(9) 84.90(7)	5 2.220(2) Cd(1)–N(2) 2.2402(18) Cd(1)–N(1)C 2.2984(17) Cd(1)–O(4)B 118.51(8) O(3)B–Cd(1)–N(1)C 90.08(7) N(2)–Cd(1)–N(1)C 150.15(7) O(2)A–Cd(1)–O(4)B 83.60(8) O(1)–Cd(1)–O(4)B 101.51(7) N(2)–Cd(1)–O(4)B 91.90(9) N(1)C–Cd(1)–O(4)B 84.90(7)			

 Table S5 Selected bond distances (Å) and angles (°) for 5.

Symmetry codes: A: -x, -y, -z + 1; B: x - 1, y, z; C: -x + 1/2, y - 1/2, -z + 1/2

Table S6 Selected bond distances (A) and angles (*) for 6.					
6					
Cd(1)–O(2)	2.268(2)	Cd(1)–O(1)	2.374(2)		
Cd(1)–N(2)	2.326(2)	Cd(1)–O(4)A	2.411(2)		
Cd(1)–N(1)	2.345(2)	Cd(1)-O(6)A	2.468(2)		
O(2)-Cd(1)-N(2)	119.19(9)	N(1)-Cd(1)-O(4)A	89.63(8)		
O(2)-Cd(1)-N(1)	93.68(9)	O(1)-Cd(1)-O(4)A	81.42(7)		
N(2)-Cd(1)-N(1)	103.63(9)	O(2)-Cd(1)-O(6)A	146.01(7)		
O(2)-Cd(1)-O(1)	84.90(9)	N(2)-Cd(1)-O(6)A	89.36(7)		
N(2)-Cd(1)-O(1)	84.93(8)	N(1)-Cd(1)-O(6)A	97.09(8)		
N(1)-Cd(1)-O(1)	170.79(8)	O(1)-Cd(1)-O(6)A	79.39(8)		
O(2)-Cd(1)-O(4)A	94.47(8)	O(4)A-Cd(1)-O(6)A	53.63(7)		
N(2)-Cd(1)-O(4)A	142.26(8)				

Table S6 Selected bond distances (Å) and angles (°) for 6.

Symmetry codes: A: -x + 1/2, y + 1/2, z

Figure S1. (a) Excitation spectra of L and **1–6** in the solid state. (a) The emission spectra of the organic carboxylic acids in solid state in **1–6**. (a) Excitation spectra of organic carboxylic acids in solid state in **1–6**.

Figure S2. (a) Fluorescence emission intensities of Mⁿ⁺@1. (b) The luminescence intensity of 1 upon incremental addition of Fe³⁺ ions solution in water. (c) Fluorescence emission intensities of Mⁿ⁺@6. (d) The luminescence intensity of 6 upon incremental addition of Fe³⁺ ions solution in water.

Figure S3. (a) Time-dependent emission spectra of 4 with 0.3 mL Fe³⁺ at the different reaction time. (b) Time-dependent emission spectra of 4 with 0.3 mL Cr₂O₇²⁻ at the different reaction time. (c) Time-dependent emission spectra of 4 with 0.3 mL Asp at the different reaction time.

Figure S4. The IR spectra of 1–6.

Figure S5. The PXRD patterns of 1–6.

Figure S6. UV-Vis absorption spectra of Fe³⁺, CrO_4^{2-} , $Cr_2O_7^{2-}$, MnO_4^{-} and Asp aqueous solution. The emission spectrum of **4** dispersed in water upon excitation of 250 nm.

Figure S7. The cyclic response of the fluorescence intensities of 4 for detecting Fe^{3+} .

Figure S8. (a) The IR spectra of 4 after 3 cycles of fluorescence testing. (b) The PXRD spectra of 4 after 3 cycles of fluorescence testing.

Figure S9. (a) Fluorescence emission intensities of 1 in different anion solution. (b) Fluorescence emission intensities of 6 in different anion solution. (c) The luminescence intensity of 1 upon incremental addition of CrO₄²⁻, (e) Cr₂O₇²⁻ and (g) MnO₄⁻ ions solution in water. (d) The luminescence intensity of 6 upon incremental addition of CrO₄²⁻, (f) Cr₂O₇²⁻ and (h) MnO₄⁻ ions solution in water.

Figure S10. (a) The fluorescence selectivity of 4 for $Cr_2O_7^{2-}$, (b) CrO_4^{2-} and (c) MnO_4^{-} ions solution in water at room temperature.

Figure S11. (a) The cyclic response of the fluorescence intensities of 4 for detecting CrO_4^{2-} , (b) $Cr_2O_7^{2-}$ and (c) MnO_4^{-} .

Figure S12. (a) Fluorescence emission intensity of 1 and (b) 6 in different amino acids.

Figure S13. The cyclic response of the fluorescence intensities of 4 for detecting Asp.

Figure S14. Fluorescence spectra of BSA@1 (a), 2 (b), 3 (c), 5 (d) and 6 (e).

	1	2	3	4	5	6
(a)	02N NO2	Соон	Соон	ноос	ноос	ноос соон
	HDNBA	H_2BDC	1,4-H ₂ CHDA	H ₂ HIPA	H ₂ MIP	H ₄ PMA
(b)	*		÷	*	*	4
(c)	je -	<>	\$\}\$	2 ⁴ 2	Jon 1	J.C.
(d)	53Bec	A Brok	E.S.	and the second s	Start a	1 Bry

Chart S1. The structural details of complexes 1–6. (a) The carboxylic acids; (b) The coordination modes of Cd(II); (c) The subunits of Cd-carboxylates; (d) The subunits of Cd-L.