Electronic Supplementary Information

Polyoxometalates-viologen photochromic hybrids for rapid solar ultraviolet light

detection, photoluminescence and inkless and erasable prints

Li Li,^a Yong-Cun Zou,^b Yang Hua,^a Xiao-Nan Li,^a Zhi-Hui Wang^a and Hong Zhang^{a,*}

^aInstitute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130000, Jilin, PR China.

^bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130000, PR China.

* Emails: hope20130122@163.com; zhangh@nenu.edu.cn (H. Zhang)

Table of contents

Fig. S1 C–H··· π interactions in neighboring viologen cations. The distance of C–H···Cg (π –ring) is 3.3974 Å. **Fig. S2** UV–Vis absorption spectra of **1** in the photochromic process. **1**: before photo irradiation; **1-P**: after exposure in a 300 W UV Xe lamp; **decolored**: heating in 130 °C for 2 h; **1-P'**: decolored sample immediately photo irradiation.

Fig. S3 FT-IR spectra of **1**. Labels: **1**: before irradiation; **1-P**: after photo irradiation; **decolored**: heating in 130 °C for 2 h.

Fig. S4 PXRD patterns of **1**. Labels: **simulated**: simulated patterns from single-crystal X-ray structure data; **1**: before irradiation; **1-P**: after photo irradiation; **decolored**: heating in 130 °C for 2 h.

Fig. S5 Optical band gap energy of compound 1.

Fig. S6 XPS (Al-K α) core-level spectra of compound 1 for O 1s (a), N 1s (b), C 1s (c) and Zn 1s (d) before and after photo irradiation. Labels: 1, before irradiation; 1-P, after photo irradiation; BE: Binding Energy.

Fig. S7 XPS (Al-Kα) core-level spectra of compound **1** for Mo 3d (left: before irradiation; right: after photo irradiation), BE: Binding Energy.

Fig. S8 UV–Vis diffuse reflectance spectra of the crystal samples upon UV light irradiation with intensity of 2 mW/cm² (a), 4 mW/cm² (b), 6 mW/cm² (c), 8 mW/cm² (d).

Fig. S9 UV–Vis diffuse reflectance spectra of the crystal samples upon UV light irradiation with intensity of 0.006 mW/cm². The colors change was shown in the inset before and after photo-irradiation.

Fig. S10 Time-dependent photoluminescence spectra of **1** upon irradiation (λ ex = 374 nm) with different UV intensities of 2 mW/cm² (a), 4 mW/cm² (b), 6 mW/cm² (c), 8 mW/cm² (d) at room temperature in air.

Fig. S11 Solid-state fluorescence emission spectra of $PbpyCl_2$ ligand and compound 1 at room temperature. **Fig. S12** (a) Photograph of content printed on one coated paper with a flower motif. (b) Printing of the content after 20 h. (c) Printing of the content after 3 days. (d) Photograph of the paper after printing for the 11 days.

Fig. S13 (left) flower motif and (right) bear motif are reusable patterns.

Fig. S14 TGA curve of 1 was investigated using powder samples under N₂.

Fig. S15 1 H NMR of PbpyCl₂ in D₂O.

Fig. S16 13 C NMR of PbpyCl₂ in D₂O.

Scheme 1. The molecular structure of PbpyCl₂.

Fig. S1 C–H··· π interactions in neighboring viologen cations. The distance of C–H···Cg (π –ring) is 3.3974(1) Å.

Fig. S2 UV–Vis absorption spectra of **1** in the photochromic process. **1**: before photo irradiation; **1-P**: after exposure in a 300 W UV Xe lamp; **decolored**: heating in 130 °C for 2 h; **1-P'**: decolored sample immediately photo irradiation.

Fig. S3 FT-IR spectra of **1**. Labels: **1**: before irradiation; **1-P**: after photo irradiation; **decolored**: heating in 130 °C for 2 h.

Fig. S4 PXRD patterns of **1**. Labels: **simulated**: simulated patterns from single-crystal X-ray structure data; **1**: before irradiation; **1-P**: after photo irradiation; **decolored**: heating in 130 °C for 2 h.

Fig. S5 Optical band gap energy of compound 1.

Fig. S6 XPS (Al-Kα) core-level spectra of compound **1** for O 1s (a), N 1s (b), C 1s (c) and Zn 1s (d) before and after photo irradiation. Labels: **1**, before irradiation; **1-P**, after photo irradiation; BE: Binding Energy.

Fig. S7 XPS (Al-K α) core-level spectra of compound 1 for Mo 3d (left: before irradiation; right: after photo irradiation), BE: Binding Energy.

Fig. S8 UV–Vis diffuse reflectance spectra of the crystal samples upon UV light irradiation with intensity of 2 mW/cm^2 (a), 4 mW/cm^2 (b), 6 mW/cm^2 (c), 8 mW/cm^2 (d).

Fig. S9 UV–Vis diffuse reflectance spectra of the crystal samples upon UV light irradiation with intensity of 0.006 mW/cm². The colors change was shown in the inset before and after photo-irradiation.

Fig. S10 Time-dependent photoluminescence spectra of 1 upon irradiation ($\lambda ex = 374$ nm) with different UV intensities of 2 mW/cm² (a), 4 mW/cm² (b), 6 mW/cm² (c), 8 mW/cm² (d) at room temperature in air.

Fig. S11 Solid-state fluorescence emission spectra of PbpyCl₂ ligand and compound 1 at room temperature.

Fig. S12 (a) Photograph of content printed on one coated paper with a flower motif. (b) Printing of the content after 20 h. (c) Printing of the content after 3 days. (d) Photograph of the paper after printing for the 11 days.

Fig. S13 (left) flower motif and (right) bear motif are reusable patterns.

Fig. S14 TGA curve of 1 was investigated using powder samples under N₂.

Fig. S15 1 H NMR of PbpyCl₂ in D₂O.

Fig. S16 13 C NMR of PbpyCl₂ in D₂O.

Tables.

Empirical formula	$C_{34}H_{50}N_7O_{40}PW_{11}Zn\textbf{(1)}$	
Formula weight	3315.50	
Temperature /K	286	
Crystal system	Orthorhombic	
Space group	Pnma	
<i>a</i> /Å	29.6331(16)	
b/Å	17.9626(9)	
c /Å	12.3339(7)	
α /deg	90	
β /deg	90	
γ/deg	90	
Volume /Å ³	6565.2(6)	
Ζ	4	
$D_c/\mathrm{g}\cdot\mathrm{cm}^{-3}$	3.354	
Absorption coefficient /mm ⁻¹	19.663	
Goodness-of-fit on F^2	1.024	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0475, wR_2 = 0.0991$	
<i>R</i> indices (all data)	$R_1 = 0.0921, wR_2 = 0.1195$	

 Table S1. Crystal Data and Structure Refinements for 1

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, {}^{b}wR_{2} = \{\sum w[(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum w[(F_{o})_{2}]^{2}\}^{1/2}.$

bond lengths (Å)	angles (deg)		
W(1)-O(7)	1.916(12)	O(7)-W(1)-O(15)	90.3(5)
W(2)-O(6)	2.014(13)	O(2)-W(2)-O(5)	92.7(7)
W(3)-O(10)	1.926(12)	O(22)-P(1)-O(23)	109.5(8)
P(1)-O(22)	1.521(16)	C(5)-C(6)-C(8)	123(3)
C(1)-N(1)	1.46(3)	N(3)-C(9)-C(13)	129(3)
Zn(1)-O(2)	2.232(15)	W(3)-O(6)-W(2)	152.3(6)
C(6)-C(7)	1.39(3)	P(1)-O(24)-W(6)	126.7(6)

Table S2. Selected bond lengths (Å) and angles (deg) for 1 $\,$