Supplemental Information for

Modulation of Defects and Electrical Behaviors in Cu-Doped KNN

Ceramics by Fluorine-Oxygen Substitution

You Liao,^{1,2,3} Dongmei Wang,^{1,2,3} Hua Wang,¹ Lingxi Zhou,¹ Qiaoji Zheng,^{*,1} and

Dunmin Lin¹

¹College of Chemistry and Materials Science, Sichuan Normal University, Chengdu,

610066, People's Republic of China

²Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049,

People's Republic of China

³School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Ion species	Coordination Number	Ionic Radius/Å
K ⁺	12	1.64
Na ⁺	12	1.39
Nb ⁵⁺	6	0.64
Cu^{2+}	6	0.73
O ²⁻	6	1.40
F-	6	1.33

Table S1 The ionic radii of K^+ , Na⁺, Nb⁵⁺, Cu²⁺, O²⁻, and F⁻ ions.

Composition (x) —	Av	Average ionic radius (Å)		- Talaranaa faatar t
	R _{A-site} ^a	$R_{\mathrm{B-site}}^{\mathrm{b}}$	$R_{\text{O-site}}^{\text{c}}$	
0	1.515	0.6409	1.4	1.00996425
0.04	1.515	0.6409	1.3972	1.01038031
0.12	1.515	0.6409	1.3916	1.01121588
0.20	1.515	0.6409	1.386	1.01205607
0.28	1.515	0.6409	1.3804	1.01290091

Table S2. The theoretical tolerance factor *t* of KNCNF-*x* ceramics.

^a Indicates the average ionic radius of K⁺ and Na⁺.

^b Indicates the weighted average ionic radius of Nb⁵⁺ and Cu²⁺.

 $^{\rm c}$ Indicates the weighted average ionic radius of ${\rm O}^{2\text{-}}$ and ${\rm F}^{\text{-}}.$

Figure S1. Component dependence of density for KNCNF-*x* ceramics.

Figure S2. Element area profile of the surface for KNCNF-*x* ceramics: (a) x = 0.12

and (b) x = 0.28.

Figure S3. Energy dispersive spectroscopy (EDS) of surface morphology for

KNCNF-*x* ceramics: (a) x = 0, (b) x = 0.04, (c) x = 0.12, and (d) x = 0.28.

Figure S4. (a-c) Original data of the impedance spectroscopies and (d-f) the

impedance-frequency (|Z|-f) curves for KNCNF-*x* ceramics with x = 0, 0.12, and 0.28.

Figure S5. Component dependence of phase angle θ for the KNCNF-*x* ceramics.