Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Structures of Mixed Manganese Ruthenium Oxides (Mn_{1-x}Ru_x)O₂ Crystallised Under Acidic Hydrothermal Conditions

S1: Thermogravimetric analysis

Figure S1: TGA-DSC of $Mn_{1-x}Ru_xO_2$ materials on heating in air at 10 °C min⁻¹

Figure S2: TGA-DSC-MS of hydrothermally made MnO_2 , showing evolution of mass = 18 (H₂O) as the material is heated to 120 °C and held for 4 hours, and then heated to 1000 °C at 10 °C/min.

Figure S3: TGA-MS of $Mn_{0.9}Ru_{0.1}O_2$, showing evolution of mass = 18 (H₂O) as the material is heated to 120 °C and held for 4 hours, and then heated to 1000 °C at 10 °C/min.

Figure S4: TGA-MS of $Mn_{0.8}Ru_{0.2}O_2$, showing evolution s in mass 18 (H₂O) as the material is heated to 120 °C and held for 4 hours, and then heated to 1000 °C at 10 °C/min.

Figure S5: TGA-MS of $Mn_{0.5}Ru_{0.5}O_2$, showing changes in mass 18 (H₂O) as the material is heated to 120 °C and held for 4 hours, and then heated to 1000 °C at 10 °C/min.

Figure S6: TGA-MS of $Mn_{0.4}Ru_{0.6}O_2$, showing changes in mass 18 (H₂O) as the material is heated to 120 °C and held for 4 hours, and then heated to 1000 °C at 10 °C/min.

Figure S7: TGA-MS of hydrothermally made RuO_2 , showing changes in mass 18 (H_2O) as the material is heated to 120 °C and held for 4 hours, and then heated to 1000 °C at 10 °C/min.

Figure S8: TGA-MS of crystalline RuO₂, showing changes in mass 18 (H₂O) as the material is heated to 120 °C and held for 4 hours, and then heated to 1000 °C at 10 °C/min.

S2: XANES of reference materials

Figure S9: Mn K edge XANES data of the reference materials for manganese from B18 Diamond Light Source.

Figure S10: Ru K edge XANES data of the reference materials for ruthenium from B18 Diamond Light Source.

S3: Additional EXAFS analysis

*Figure S11: Crystalline RuO*₂ *EXAFS fitting in k-space and R-space, fitted to literature RuO*₂.

Table S1: Fitting parameters for crystalline RuO_2 EXAFS data with R-factor=0.05736, $S_0^2=1.1(2)$ and $E_0=-4.7$ eV, where R_{eff} is effective path length.

Name	N	σ² / Ų	R _{eff} / Å	<i>R</i> / Å
01.1	6	0.0038(14)	1.9713	1.967(14)
Ru1.1	2	0.0028(13)	3.1049	3.110(16)
Ru1.2	8	0.0035(14)	3.5385	3.5417(13)
01.3	4	0.02(16)	3.4123	3.6(7)
01.4	4	0.00(3)	3.6620	3.8(3)
Ru1.3	4	0.005(3)	4.4968	4.49(3)
01.201.7	16	0.005(10)	4.6882	4.42(9)
01.201.2	4	0.008(3)	3.9715	3.963(3)
01.2	4	0.008(3)	3.9715	3.963(3)
01.5	8	0.004(9)	4.03610	3.94(11)
Ru1.5	8	0.004(3)	5.63930	5.47(3)
O1.2Ru1.5	16	0.005(3)	5.64350	5.63(3)

*Figure S12: Hydrothermally made RuO*₂ *EXAFS fitting in k space and R space, fitted to literature RuO*₂.²⁹

Table S2: Structural parameters fitted against the Ru K edge EXAFS of hydrothermal RuO₂, with R-factor=0.13086 S_0^2 =0.77(12) and E₀=-3.9 eV, where R_{eff} is effective path length.

Name	Ν	σ ² / Å ²	R _{eff} / Å	R / Å
01.1	6	0.0045(12)	1.9713	1.971(10)
Ru1.1	2	0.0043(10)	3.1049	3.102(12)
Ru1.2	8	0.0058(8)	3.53850	3.548(10)

Figure S13: Hydrothermally made MnO_2 Mn K edge EXAFS fitting in k space and R space, to literature MnO_2 .²⁸

Table S3: Structural parameters fitted against the Mn K edge EXAFS of hydrothermal MnO_2 , with R-factor=0.09786, $S_0^2=0.66(13)$ and $E_0=-6.0$ eV, where R_{eff} is effective path length.

Name	Ν	σ ² / Å ²	R _{eff} / Å	R / Å
01.1	6	0.0021(14)	1.88840	1.883(10)
Mn1.1	2	0.0018(16)	2.8765	2.880(16)
Mn1.2	8	0.0034(12)	3.4303	3.436(13)

*Figure S14: Mn*_{0.4}*Ru*_{0.6}*O*₂ *Ru K edge EXAFS fitting in k space and R space.*

*Figure S15: Mn*_{0.4}*Ru*_{0.6}*O*₂ *Mn K edge EXAFS fitting in k space and R space.*

Name	N	σ² / Ų	R _{eff} / Å	<i>R</i> / Å		
Ru K edge (S_0^2 =	Ru K edge (S_0^2 =0.82(8) and E_0 =-1.48 eV)					
Ru-O	6	0.0046(8)	1.97130	1.972(7)		
Ru-Ru	1.18	0.0049(12)	3.10490	3.067(16)		
Mn-Ru	0.82	0.0049(12)		2.99(3)		
Ru-Ru	4.72	0.0062(11)	3.53850	3.535(8)		
Mn-Ru	3.28	0.0062(11)		3.512(17)		
Mn K edge (S_0^2 =	Mn K edge (S_0^2 =0.62(18) and E_0 =-4.73 eV)					
Mn-O	6	0.003(2)	(1.88840)	1.900(16)		
Mn-Mn	0.82	0.0049(12)	(2.87650)	2.94(8)		
Mn-Ru	1.18	0.0049(12)		2.99(3)		
Mn-Mn	3.28	0.0062(11)	(3.4303)	3.48(5)		
Mn-Ru	4.72	0.0062(11)		3.512(17)		

Table S4: Structural parameters fitted against the Mn K edge and Ru K edge EXAFS of $Mn_{0.4}Ru_{0.6}O_2$ with an R-factor=0.07619, where R_{eff} is effective path length.

*Figure S16: Mn*_{0.5}*Ru*_{0.5} *O*₂ *Ru K edge EXAFS fitting in k space and R space, to edited literature RuO*₂.²⁹

*Figure S17: Mn*_{0.5}*Ru*_{0.5}*O*₂ *Mn K edge EXAFS fitting in k space and R space.*

Table S5: Structural parameters fitted against the Mn K edge and Ru K edge EXAFS of $Mn_{0.5}Ru_{0.5}O_2$ with an R-factor=0.08564, where R_{eff} is effective path length.

Name	N	σ² / Ų	R _{eff} / Å	<i>R</i> / Å	
Ru K edge (S_0^2 =	0.78(9) and <i>E</i> ₀ =-1	.43 eV)			
Ru-O	6	0.0048(9)	1.97130	1.979(8)	
Ru-Ru	0.94	0.0052(11)	3.10490	3.06(2)	
Mn-Ru	1.06	0.0052(11)		2.983(19)	
Ru-Ru	3.76	0.0066(12)	3.53850	3.529(13)	
Mn-Ru	4.24	0.0066(12)		3.511(11)	
Mn K edge (S_0^2 =0.62(9) and E_0 =-7.08 eV)					
Mn-O	6	0.0036(11)	(1.88840)	1.89591	
Mn-Mn	1.06	0.0052(11)	(2.87650)	2.90(3)	
Mn-Ru	0.94	0.0052(11)		2.983(19)	
Mn-Mn	4.24	0.0066(12)	(3.4303)	3.47(2)	
Mn-Ru	3.76	0.0066(12)		3.511(11)	

*Figure S18: Mn*_{0.8}*Ru*_{0.2}*O*₂ *Ru K edge EXAFS fitting in k space and R space, to edited literature MnO*₂.²⁸

*Figure S19: Mn*_{0.8}*Ru*_{0.2}*O*₂ *Mn K edge EXAFS fitting in k space and R space, to edited literature MnO*₂.²⁸

Name	N	σ² / Ų	R _{eff} / Å	<i>R</i> / Å		
Ru K edge (S_0^2 =	Ru K edge (S_0^2 =0.73(9) and E_0 =-1.75 eV)					
Ru-O	6	0.0025(8)	(1.97130)	1.954(6)		
Ru-Ru	0.4	0.003(3)	(3.10490)	2.86(9)		
Mn-Ru	1.6	0.003(3)		2.926(15)		
Ru-Ru	1.6	0.007(2)	(3.53850)	3.51(7)		
Mn-Ru	6.4	0.007(2)		3.481(12)		
Mn K edge (S_0^2 =0.62(2) and E_0 =-6.95 eV)						
Mn-O	6	0.003(2)	1.88840	1.89(2)		
Mn-Mn	1.6	0.003(3)	2.87650	2.89(4)		
Mn-Ru	0.4	0.003(3)		2.926(15)		
Mn-Mn	6.4	0.007(2)	3.4303	3.46(3)		
Mn-Ru	1.6	0.007(2)		3.481(12)		

Table S6: Structural parameters fitted against the Mn K edge and Ru K edge EXAFS of $Mn_{0.8}Ru_{0.2}O_2$ with an R-factor=0.10094, where R_{eff} is effective path length.

Figure S20: Mn_{0.9}Ru_{0.1}O₂ Ru K edge EXAFS fitting in k space and R space²⁸

Figure S21: Mn_{0.9}Ru_{0.1}O₂ Mn K edge EXAFS fitting in k space and R space. ²⁸

Table S7: Structural parameters fitted against the Mn K edge and Ru K edge EXAFS of $Mn_{0.9}Ru_{0.1}O_2$ with an R-factor=0.11774, where R_{eff} is effective path length.

Name	N	σ² / Ų	R _{eff} / Å	<i>R</i> / Å	
Ru K edge (S_0^2 =	0.69(10) and $E_0 = -$	-2.27 eV)			
Ru-O	6	0.0020(9)	(1.97130)	1.951(9)	
Ru-Ru	0.15	0.0038(17)	(3.10490)	2.48(9)	
Mn-Ru	1.85	0.0038(17)		2.95(3)	
Ru-Ru	0.6	0.0053(10)	(3.53850)	3.04(9)	
Mn-Ru	7.4	0.0053(10)		3.461(16)	
Mn K edge (S_0^2 =0.78(14) and E_0 =-6.21 eV)					
Mn-O	6	0.0034(16)	1.88840	1.88739	
Mn-Mn	1.85	0.0038(17)	2.87650	2.88(2)	
Mn-Ru	0.15	0.0038(17)		2.95(3)	
Mn-Mn	7.4	0.0053(10)	3.4303	3.438(17)	
Mn-Ru	0.6	0.0053(10)		3.461(16)	

S4: XPS analysis

Figure S22: Manganese 2p XPS of Mn_{1-x}Ru_xO₂ materials.

Figure S23: Ruthenium 3d and carbon 1s XPS of $Mn_{1-x}Ru_xO_2$ materials compared to crystalline RuO_2 .

Figure S24: Percentage ruthenium to manganese content by EDXA compared to XPS.

Figure S25: Percentage content of Ru^{4+} , Ru^{3+} , Mn^{3+} and Mn^{4+} , calculated from XPS.