Supplementary Information

Insights into of the Lithium-Diffusion Process in Defect Porous Crystalline POM@MOF Anode Material

Peipei Zhu,^{†‡}Xiya Yang,[†] Xiao Li,[†] Ning Sheng,[†] Haifeng Zhang,[†] Gongguo Zhang,[†] Jingquan Sha*[†]

[†]Shandong Key Laboratory of Inorganic Chemistry, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, P. R.China.

[‡]Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P. R. China.

1. Supplementary Figures of crystalline POM@MOFs material	2
2. Calculation of Theoretical Capacity	3
3. Capacity Summary of Li-ion Battery Materials	6
4. Crystallographic Data of Crystalline Material	7
5. References	10

1. Supplementary Figures of crystalline POM@MOFs material

Figure S1. Representation of the asymmetric unit (a) and the coordination information (b) of POM nano- clusters and Cu in the crystalline POM@MOFs material.

Figure S2. Representation of the 2D pure inorganic sheet or layers generated by 1D {-Mo8-Cu3-} chain structure *via* the -Cu4-O9W- fragment in crystalline POM@MOFs material.

Figure S3. Combined ball/stick, stacked and topologic representation of the 3D pillared hybrid frameworks with opening feature formed by 1D hybrid chain and 2D pure inorganic layers in crystalline POM@MOFs.

Figure S4. The charge-charge curve, cycle stabilities and columbic efficiency of commercial graphite.

Figure S5. Nyquist plots and fitting plots after the first discharge-charge process of commercial graphite anode.

2. Calculation of Theoretical Capacity

The theoretical capacities were calculated according to equation (1):¹

$$Q = \frac{nF}{3.6M_W} = \frac{96500n}{3.6M_W} = 26805.56\frac{n}{M_W}$$
(1)

Q: Reversible charging-discharging capacity; n: Number of electrons; F: Faraday constant; M_w : Molecular weight.

Owing to the intercalation mechanism for Li storage, the redox reactions of metal ions (Mo and Cu) could be considered according to the equations (2) and (3).

$$Mo^{6+} \leftrightarrow Mo^{5+} \leftrightarrow Mo^{4+}$$
 (2)

$$Cu^{2+} \leftrightarrow Cu^{+} \leftrightarrow Cu \tag{3}$$

If two Mo (VI) atoms and six Cu (II) ions in the material are reduced to Mo^{4+} and metallic copper, respectively. So, maximum of n = 16, Q = 354 mAh g⁻¹.

16-electrons redox

Figure S6. The schematic of the Calculation of the theoretical capacities of the crystalline POM@MOFs.

Figure S7. The TGA curve (thermal stability) of the porous crystalline POM@MOFs material.

Figure S8. High-resolution XPS spectra of Mo (a), Cu (b), N (c) and XPS spectra of the fresh crystalline POM@MOFs material, respectively.

Figure S9. SEM images of the crystalline POM@MOFs material after 1st-discharge, 1st-charge and 2nd-dischage, D.C. = discharge, C. = charge.

3. Capacity Summary of Li-ion Battery Materials

	Current	Initial	Cyclic Capacity	
Electrode Materials	Density	Capacity	(mAh·g ⁻¹)/ Cyclic	Ref.
	$(\mathbf{m}\mathbf{A}\cdot\mathbf{g}^{-1})$	$(mAh \cdot g^{-1})$	Number (n)	
SnO ₂ /MXene	500	1463	696 (50)	Nano Energy, 2017 , 34, 249-256.
Graphene/Mn ₃ O ₄	100	1271	702 (100)	ACS Nano, 2016 , 10, 6227-6234.
Ti ₂ C MXene	100	1015	389 (100)	Nanoscale, 2016 , 8, 7580-7587
GaSe NS/SWCNT	100	1320	713 (100)	Small, 2017 , 13, 1701677
Co ₃ O ₄ @Co@GC	100	1550	686 (60)	<i>Chem. Eng. J.</i> , 2017 , <i>321</i> , 495-501
CoS NS	50	954	677 (60)	Chem. Mater. 2 015 , 27, 5726-5735
Fe ₃ O ₄ @PEG	0.3C	550	600 (50)	Chem. Mater, 2016 , 28, 6689-6697
Faceted Cu ₂ O	100	784	397 (50)	CrystEngComm, 2015 , 17, 2110-2117
V ₂ O ₃ /Graphene	50	585	608 (100)	<i>ChemElectroChem</i> , 2019 , 6, 493-503
[(Bu ₄ N) ₂ [Mo ₆ O ₁₈ - <i>N</i> -Ph-(<i>o</i> - CH ₃) ₂ - <i>p</i> -SCN]	50	1678	876 (100)	<i>RSC Adv.</i> , 2014 , <i>4</i> , 7374-7379.
$\frac{\text{TBA}_{5/2}[\text{PMoV}_8\text{MoVI}_4\text{O}_{37}(\text{O} + \text{H}_3\text{Zn}_4(\text{bdc})_{1/2}(\text{bzt})_{3/2}]3/2\text{H}}{2\text{O}}$	100	1389	780 (200)	<i>Chem. Commun.</i> , 2017 , 53, 10054-10057.
$\begin{array}{l} (TBA)_{3}[PMo^{V_{8}}Mo^{VI_{4}}O_{38}(O\\H)_{2}Zn_{4}(PBA)_{2}]\cdot H_{2}O \end{array}$	100	1008	640 (100)	<i>Chem. Commun.</i> , 2017 , <i>53</i> , 5204-5207.

 Table S1. The electrochemical behavior in LIBs of different anode materials ^a

$[PMo_8^VMo_4^{VI}O_{37}(OH)_3Zn_4]$ $][TPT]_5 \cdot 2TPT \cdot 2H_2O$	50	1322	750 (200)	<i>J. Mater. Chem. A</i> , 2017 , <i>5</i> , 8477-8483.	
[Ag ₂₆ (Trz) ₁₆ (OH) ₄][P ₂ W ₁₈ O ₆₂]	100	1077	550 (100)	J. Mater. Chem. A,	
$Na[Ag_{16}(Trz)_{9}(H_{2}O)_{4}][P_{2}W_{18}O_{62}] \cdot H_{2}O$	100	1094	600 (100)	2017 , <i>5</i> , 3371-3376.	
{(H2bimb)[CoMo8O26]}n	100	1563	1083 (1000)	Chem. Commun., 2017 , <i>53</i> , 10560-10563.	
$ \{ [Ni_6(OH)_3(H_2O)(en)_3(PW \\ {}_{9}O_{34})] [Ni_6(OH)_3(H_2O)_4(en) \\ {}_{3}(PW_9O_{34})] (BDC)_{1.5} \} [Ni(e \\ n)(H_2O)_4] \cdot H_3O $	0.25 C	1421	540 (500)	J. Mater. Chem. A, 2015, 3, 22989-22995	
[{Cu(btp) ₂ } ₃ {As ₂ Mo ₁₈ }]/C onductive Grapheme	100	1555	878 (240)	<i>CrystEngComm</i> , 2017 , <i>19</i> , 7154-716.	
[Bu ₄ N] ₄ [SiW ₁₁ O ₃₉ {O(SiCH 2CH ₂ CH ₂ NH ₂ ·HCl) ₂ }]@ CNTs	0.5 mAcm ⁻²	1189	650 (100)	Phys. Chem. Chem. Phys., 2014, 16, 19668-19673.	
[Cu ₂ (BTC) _{4/3}] ₆ [H ₅ PMo ₁₀ V ₂ O ₄₀])@RGO	50	2367	1075 (400)	Nano Energy, 2017, 34, 205-214.	
$\begin{array}{l} (Bu_{4}N)_{4\{}(SiW_{11}O_{39})[O(SiC\\ H_{2}CH_{2}CH_{2}NH\text{-}COOCH_{2}C_{1}\\ & & \\ $	0.5 mAcm ⁻²	1569	580 (100)	<i>Adv. Funct. Mater.</i> , 2013 , <i>23</i> , 6100-6105.	
[Ag ₁₀ (trz) ₄ (H ₂ O) ₂][HPW ₁₂ O ₄₀]@ CNTs	100	2000	859 (70)	ACS Appl. Mater. Interfaces, 2018 , 10, 16660-16665.	

4. Crystallographic Data of Crystalline Material

 Table S2. Bond lengths [Å] and angles [°] for crystalline POM@MOFs.

Bonds	Length	Bonds	Length
N(1)-Cu(1)	2.367(10)	O(6)-Cu(3)	1.953(9)
N(2)-Cu(3)	1.947(11)	O(7)-Mo(2)	1.726(9)
N(3)-Cu(2)	2.184(14)	O(7)-Cu(4)	1.935(9)
N(4)-Cu(1)	1.997(11)	O(8)-Mo(3)	1.645(15)

N(5)-Cu(2)	1.962(10)	O(9)-Cu(3)	2.245(15)
N(6)-Cu(1)	2.029(12)	Cu(1)-N(4)#4	1.997(11)
N(7)-Cu(2)	2.002(10)	Cu(1)-N(6)#4	2.029(12)
N(8)-Cu(4)	1.971(11)	Cu(1)-N(1)#4	2.367(10)
O(1)-Mo(2)	1.626(9)	Cu(2)-N(5)#1	1.962(10)
O(2)-Mo(2)#1	1.942(6)	Cu(2)-N(7)#1	2.002(10)
O(2)-Mo(2)	1.942(6)	Cu(3)-N(2)#1	1.947(11)
O(2)-Mo(3)#2	2.178(12)	Cu(3)-O(6)#1	1.953(9)
O(3)-Mo(3)#2	1.841(9)	Cu(4)-O(7)#1	1.935(9)
O(3)-Mo(2)	2.038(8)	Cu(4)-N(8)#1	1.971(11)
O(3)-Mo(1)	2.233(9)	Mo(1)-O(6)#3	1.697(9)
O(4)-Mo(3)	1.740(14)	Mo(1)-O(6)#5	1.697(9)
O(5)-Mo(1)	1.887(9)	Mo(1)-O(5)#6	1.887(9)
O(5)-Mo(2)	1.890(9)	Mo(1)-O(3)#6	2.233(9)
O(6)-Mo(1)#3	1.697(9)	Mo(3)-O(3)#6	1.841(9)
Mo(3)-O(2)#2	2.178(12)	Mo(3)-O(3)#2	1.841(9)
Bonds	Angle	Bonds	Angle
N(4)-Cu(1)-N(4)#4	180	O(5)-Mo(1)-O(3)#6	85.7(3)
N(4)-Cu(1)-N(6)	91.4(4)	O(5)#6-Mo(1)-O(3)#6	72.5(3)
N(4)#4-Cu(1)-N(6)	88.6(4)	O(6)#3-Mo(1)-O(3)	89.4(4)
N(4)-Cu(1)-N(6)#4	88.6(4)	O(6)#5-Mo(1)-O(3)	164.2(4)
N(4)#4-Cu(1)-N(6)#4	91.4(4)	O(5)-Mo(1)-O(3)	72.5(3)
N(6)-Cu(1)-N(6)#4	180	O(5)#6-Mo(1)-O(3)	85.7(3)
N(4)-Cu(1)-N(1)#4	87.6(4)	O(3)#6-Mo(1)-O(3)	78.5(4)
N(4)#4-Cu(1)-N(1)#4	92.4(4)	O(1)-Mo(2)-O(7)	104.8(4)
N(6)-Cu(1)-N(1)#4	92.6(4)	O(1)-Mo(2)-O(5)	105.6(4)
N(6)#4-Cu(1)-N(1)#4	87.4(4)	O(7)-Mo(2)-O(5)	96.7(4)
N(4)-Cu(1)-N(1)	92.4(4)	O(1)-Mo(2)-O(2)	103.5(5)
N(4)#4-Cu(1)-N(1)	87.6(4)	O(7)-Mo(2)-O(2)	96.9(4)

N(6)-Cu(1)-N(1)	87.4(4)	O(5)-Mo(2)-O(2)	143.3(4)
N(6)#4-Cu(1)-N(1)	92.6(4)	O(1)-Mo(2)-O(3)	102.3(4)
N(1)#4-Cu(1)-N(1)	180	O(7)-Mo(2)-O(3)	152.8(4)
N(5)-Cu(2)-N(5)#1	88.6(6)	O(5)-Mo(2)-O(3)	77.2(4)
N(5)-Cu(2)-N(7)	172.7(4)	O(2)-Mo(2)-O(3)	75.2(4)
N(5)#1-Cu(2)-N(7)	91.4(4)	O(8)-Mo(3)-O(4)	106.8(8)
N(5)-Cu(2)-N(7)#1	91.4(4)	O(8)-Mo(3)-O(3)#6	108.4(3)
N(5)#1-Cu(2)-N(7)#1	172.7(4)	O(4)-Mo(3)-O(3)#6	95.7(3)
N(7)-Cu(2)-N(7)#1	87.7(6)	O(8)-Mo(3)-O(3)#2	108.4(3)
N(5)-Cu(2)-N(3)	96.2(4)	O(4)-Mo(3)-O(3)#2	95.7(3)
N(5)#1-Cu(2)-N(3)	96.2(4)	O(3)#6-Mo(3)-O(3)#2	136.1(6)
N(7)-Cu(2)-N(3)	91.0(4)	O(8)-Mo(3)-O(2)#2	105.7(6)
N(7)#1-Cu(2)-N(3)	91.0(4)	O(4)-Mo(3)-O(2)#2	147.4(7)
N(2)-Cu(3)-N(2)#1	92.0(6)	O(3)#6-Mo(3)-O(2)#2	73.9(3)
O(6)#1-Cu(3)-O(6)	88.1(5)	O(3)#2-Mo(3)-O(2)#2	73.9(3)
O(6)#1-Cu(3)-O(9)	88.8(4)	O(6)#3-Mo(1)-O(6)#5	104.1(6)
O(6)-Cu(3)-O(9)	88.8(4)	O(6)#3-Mo(1)-O(5)	100.6(4)
O(7)#1-Cu(4)-O(7)	83.0(5)	O(6)#5-Mo(1)-O(5)	96.6(4)
O(7)#1-Cu(4)-N(8)#1	175.4(4)	O(6)#3-Mo(1)-O(5)#6	96.6(4)
O(7)-Cu(4)-N(8)#1	93.3(4)	O(6)#5-Mo(1)-O(5)#6	100.6(4)
O(7)#1-Cu(4)-N(8)	93.3(4)	O(5)-Mo(1)-O(5)#6	151.9(6)
O(7)-Cu(4)-N(8)	175.4(4)	O(6)#3-Mo(1)-O(3)#6	164.2(4)
N(8)#1-Cu(4)-N(8)	90.3(6)	O(6)#5-Mo(1)-O(3)#6	89.4(4)

#1: x, -y+1, z; #2: -x+1, -y+1, -z; #3: -x+1/2, -y+1/2, -z; #4: -x+1/2, -y+3/2, -z+1; #5: x+1/2, -y+1/2, z; #6: -x+1, y, -z.

5. References

Chen, J. J.; Symes, M. D.; Fan, S. C.; Zheng, M. S.; Miras, H. N.; Dong, Q.
 F.; Cronin, L. *Adv. Mater.*, **2015**, *27*, 4649-4654