Supporting Information for:

Lone-pair self-containment in pyritohedron-shaped closed cavities: Optimized hydrothermal synthesis, structure, magnetism and lattice thermal conductivity of Co₁₅F₂(TeO₃)₁₄

Minfeng Lü,^{a,*, ID} Jianhua Jiang,^a Bei Zhu,^a Yuwei Zhao,^a Tianyu Zhu,^a Haoming Yang,^a Yong Jin, ^a Houria Kabbour,^b Kwang-Yong Choi^c and William T. A. Harrison^{d,}

^a School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, Perople's Republic of China
^bUniversité Lille Nord de France, UMR 8181 CNRS, Unité de Catalyse et de Chimie du Solide (UCCS USTL), F-59655 Villeneuve d'Ascq, France
^cDepartment of Physics, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
^d Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland

*To whom correspondence should be addressed

*E-mail address:*m.f.lv@hotmail.com (Minfeng Lü)

Figures

Figure S1. Calculated and observed powder X-ray diffraction patterns for

Co15F2(TeO3)14

Figure S2.The corresponding EDXRD spectra (I) for Co₁₅F₂(TeO₃)₁₄

Figure S3. The corresponding EDXRD spectra (II) for $Co_{15}F_2(TeO_3)_{14}$

Figure S4. Infrared spectra of Co₁₅F₂(TeO₃)₁₄

Figure S5.UV/Vis/NIR absorption spectrum of Co₁₅F₂(TeO₃)₁₄

Figure S6. UV-vis diffuse reflectance spectra of Co₁₅F₂(TeO₃)₁₄.

Figure S7. Co 2p doublet recorded for $Co_{15}F_2(TeO_3)_{14}$.

Figure S8. Co 2p doublet recorded for $Co_{15}F_2(TeO_3)_{14}$.

Figure S9. TGA diagram for Co₁₅F₂(TeO₃)_{14.}

Figure S10. View of Calculated Tellurium atoms lone pairs.

Figure S11. View down [001] of a slab of $Co_{15}F_2(TeO_3)_{14}$ showing the honeycomb

layers, built up from Co and Te centered polyhedral.

Figure S12. Lattice thermal conductivity as a function of temperature for $Co_{15}F_2(TeO_3)_{14}$ samples.

Tables

Table S1. BVS of the atoms in Co₁₅F₂(TeO₃)₁₄

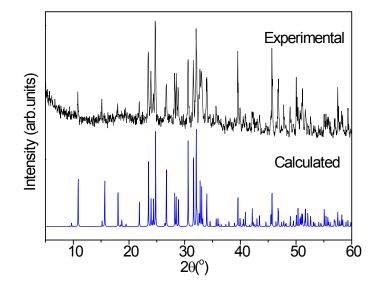
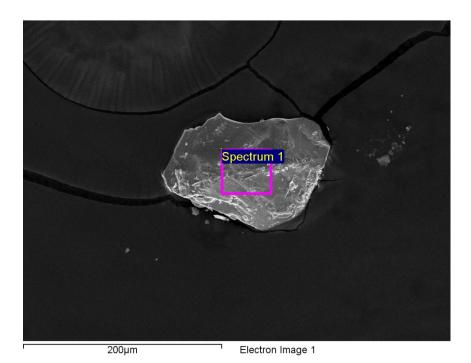



Figure S1. Calculated and observed powder X-ray diffraction patterns for $Co_{15}F_2(TeO_3)_{14}$

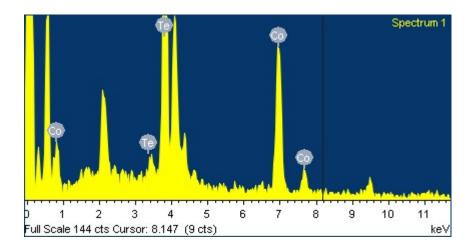


Figure S2.The corresponding EDXRD spectra (I) for $Co_{15}F_2(TeO_3)_{14}$

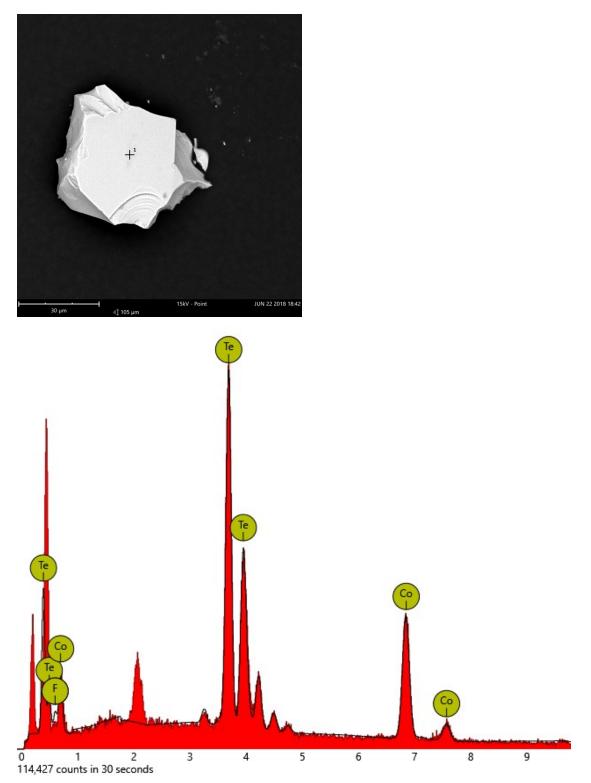


Figure S3.The corresponding EDXRD spectra (II) for $Co_{15}F_2(TeO_3)_{14}$

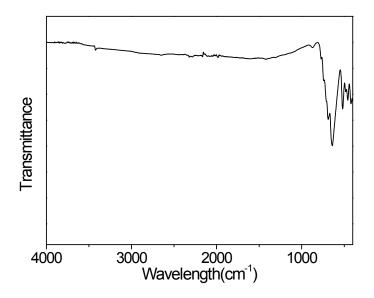


Figure S4. Infrared spectra of Co₁₅F₂(TeO₃)₁₄

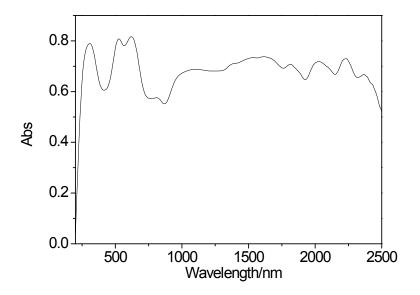


Figure S5. UV/Vis/NIR absorption spectrum of Co₁₅F₂(TeO₃)₁₄

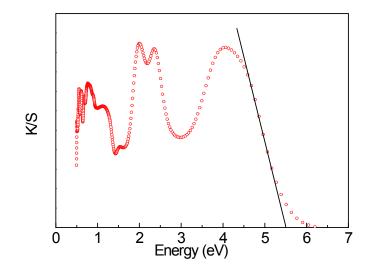


Figure S6. UV-vis diffuse reflectance spectra of $Co_{15}F_2(TeO_3)_{14}$.

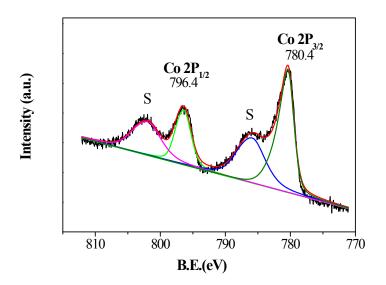


Figure S7. Co 2p doublet recorded for $Co_{15}F_2(TeO_3)_{14}$.

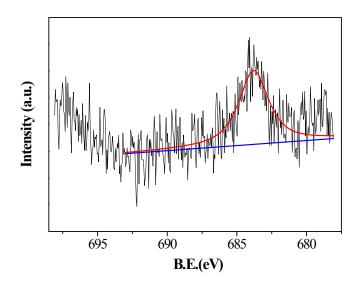


Figure S8. F 1s core level for $Co_{15}F_2(TeO_3)_{14}$.

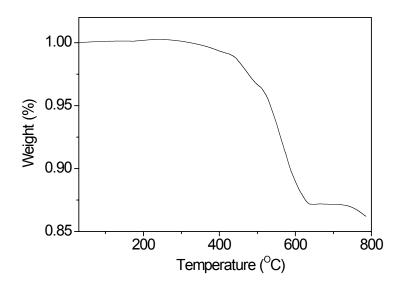


Figure S9. TGA diagram for Co₁₅F₂(TeO₃)₁₄.

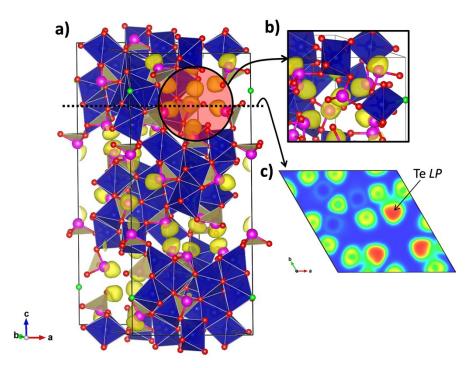


Figure S10. View of Calculated Tellurium atoms lone pairs.

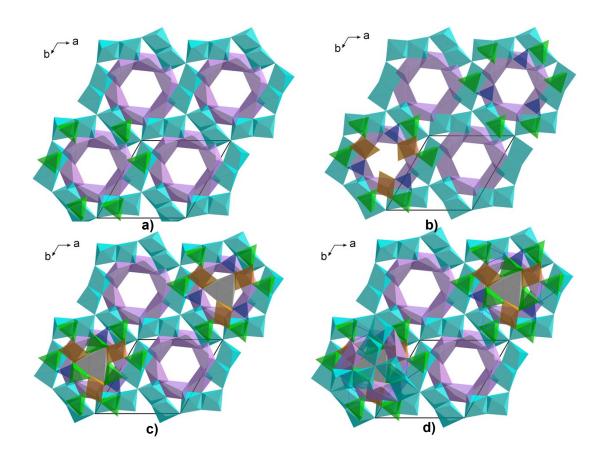


Figure S11: View down [001] of a slab of $Co_{15}F_2(TeO_3)_{14}$ showing the honeycomb layers, built up from Co and Te centered polyhedral. a-f:

a) The way the Co and Te centered polyhedral cap the top and bottom of each 12 ring of Co3 (turquoise) units and 6 rings of Te2 (lavender) groups (12-Co3+6-Te2 ring) result in closed pyritohedron-shaped cavities are shown sequentially: a) "empty" 12+6 ring hole (*top right*), 12-Co3+6-Te2 ring with capped hexads of Co2 (bright green) centered groups (6-Co2) on both sides (*bottom left*).

b) 12-Co3+6-Te2 ring+ 6-Co2 attached with trios of Te2 centered groups (3-Te2) (light blue) on both sides (*top right*), 12-Co3+6-Te2 ring + 6-Co2+3-Te2 attached with trios of Co1 (light orange)-centered groups (3-Co1) attached on both sides (*bottom left*).

c) 12-Co3+6-Te2 ring+6-Co2+3-Te2+3-Co1 attached with one of Te1 (gray) centered groups (1-Te1) on both sides (*top right*). *Another trio of Co2*-centered polyhedral capped the top of trios of Co1-centered octahedron (*bottom left*).

d) Another trio of Te3-centered polyhedral attached to the trios of Co1 and the abovementioned trios of Co2-centered groups (top right). Another Co3/Te2-centered polyhedral in the next Co3/Te2 layer attached the abovementioned trios of the Co2 layer (bottom left).

e) These honeycomb layers fused sequentially to form a continuous, threedimensional structure, which encloses pyritohedron-shaped Te(IV) lone-pair selfcontained cavities.

f) Note that rhombohedral crystal symmetry dictates that, with respect to the z direction, the adjacent basal Co3 sheets are laterally displaced from each other by x = 1/3 and y = 2/3. Thus, additional Co3 sheets capped afterwards face on the center of Co12 polyhedral units along the [001] direction in the next sheet, and there are no continuous channels of any significant size in this structure.

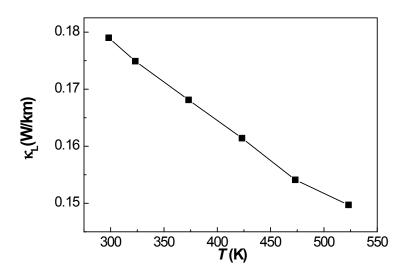


Figure S12. Lattice thermal conductivity as a function of temperature for $Co_{15}F_2(TeO_3)_{14}$ samples.

Atom*	BVS
Tel	4.06(3)
Te2	4.28(3)
Te3	4.03(3)
Col	1.965(10)
Co2	1.810(10)
Co3	1.983(9)
01	-1.964(17)
O2	-2.197(14)
03	-2.162(14)
O4	-1.93(2)
O5	-2.041(16)
O6	-1.898(16)
O7	-1.942(14)
F1	-0.964(2)

Table S1. BVS of the atoms in $Co_{15}F_2O_{42}Te_{14}$.

* (*R*, *b*) parameters: Te⁴⁺–O (1.977, 0.37), Co²⁺–O (1.692, 0.37), Co²⁺–F (1.640, 0.37)