Photophysical properties of some novel tetraphenylimidazole derived BODIPY based fluorescent molecular rotors

Bhupendra Kumar Dwivedi, Vishwa Deepak Singh, Yogesh Kumar and Daya Shankar Pandey *

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi–221 005 (UP), India

Contents

1.	1 H/ 13 C NMR spectra of 4a–4d , and 5a–5d S3–S10
2.	1 H/ 13 C/ 11 B/ 19 F NMR spectra of HPIB1–HPIB4 S11–S18
3.	ESI-MS spectra of HPIB1–HPIB4
4.	Absorption and emission spectra for HPIB1–HPIB4
5.	Fluorescence excitation spectra for HPIB1–HPIB4
6.	Concentration-dependent absorption spectra for HPIB1-HPIB4
7.	Concentration-dependent emission spectra for HPIB1-HPIB4
8.	Emission spectra of HPIB2–HPIB4 in different solvents
9.	Absorption spectra of HPIB1–HPIB4 in different solvents
10.	Absorption spectra in DMF/water mixture with varying water fractions for
	HPIB2–HPIB4
11.	Variation in emission intensity in DMF/water mixture with varying water fractions for
	HPIB1–HPIB4
12.	Time-resolved fluorescence decay profile in DMF/water mixture with varying water
	fractions for HPIB1–HPIB4
13.	DLS spectra of nano-aggregates for HPIB1–HPIB4S36
14.	Absorption spectra in methanol/glycerol mixture with increasing glycerol volume
	fractions for HPIB1–HPIB4
15.	Emission spectra and time-resolved fluorescence decay profile at different viscosities,
	and plot of fluorescence quantum yield/lifetime vs viscosity for
	HPIB1–HPIB4
16.	Packing diagrams for HPIB1-HPIB4 extracted from single crystal
	structure

17.	DFT optimized structure for HPIB1–HPIB4
18.	UV/Vis spectra of HPIB1-HPIB4 obtained from TD-DFT
	calculations
19.	Table S1 showing the fluorescence quantum yield in different solvents for
	HPIB1–HPIB4
20.	Table S2 showing the fluorescence lifetime (τ_f) variation at different viscosities (in
	methanol/glycerol mixture) for HPIB1-HPIB4
21.	Table S3 showing the fluorescence quantum yield (Φ_f) variation at different viscosities
	(in methanol/glycerol mixture) for HPIB1–HPIB4
22.	Table S4 showing the variation in radiative (kr) and non-radiative (knr) rate constants in
	methanol/glycerol mixture at different viscosities for HPIB1-HPIB4
23.	Table S5 showing bond distances in crystal structure of HPIB1-HPIB4 and their
	comparison with DFT optimized structure
24.	Table S6 showing bond angles in crystal structure of HPIB1-HPIB4 and their
	comparison with DFT optimized structure
25.	Table S7 showing dihedral angles in crystal structure of HPIB1-HPIB4 and their
	comparison with DFT optimized structure
26.	Table S8 showing the electronic transitions for HPIB1-HPIB4 obtained from TD-DFT
	calculation

Fig. S1 1 H (a) and 13 C (b) NMR spectra of 4a in CDCl₃.

Fig. S2 ${}^{1}H$ (a) and ${}^{13}C$ (b) NMR spectra of 4b in CDCl₃.

Fig. S3 1 H (a) and 13 C (b) NMR spectra of 4c in CDCl₃.

Fig. S4 1 H (a) and 13 C (b) NMR spectra of 4d in CDCl₃.

Fig. S5 1 H (a) and 13 C (b) NMR spectra of 5a in CDCl₃.

Fig. S6 1 H (a) and 13 C (b) NMR spectra of 5b in CDCl₃.

Fig. S7 1 H (a) and 13 C (b) NMR spectra of 5c in CDCl₃

Fig. S8 1 H (a) and 13 C (b) NMR spectra of 5d in CDCl₃.

Fig. S9 1 H (a) and 13 C (b) NMR spectra of HPIB1 in CDCl₃

Fig. S10 19 F (a) and 11 B (b) NMR spectra of HPIB1 in CDCl₃

Fig. S11 1 H (a) and 13 C (b) NMR spectra of HPIB2 in CDCl₃

Fig. S12 19 F (a) and 11 B (b) NMR spectra of HPIB2 in CDCl₃

Fig. S13 ${}^{1}H$ (a) and ${}^{13}C$ (b) NMR spectra of HPIB3 in CDCl₃

Fig. S14 19 F (a) and 11 B (b) NMR spectra of HPIB3 in CDCl₃.

Fig. S15 1 H (a) and 13 C (b) NMR spectra of HPIB4 in CDCl₃.

Fig. S16 19 F (a) and 11 B (b) NMR spectra of HPIB4 in CDCl₃.

Fig. S17 ESI-MS spectra of HPIB1.

Fig. S18 ESI-MS spectra of HPIB2.

Fig. S19 ESI-MS spectra of HPIB3.

Fig. S20 ESI-MS spectra of HPIB4.

Fig. S21 Absorption spectra (a) and its normalized representation (b) for HPIB1–HPIB4 (c; 50 μ M, DMF).

Fig. S22 Emission spectra (a) and its normalized representation (b) for HPIB1–HPIB4 (c; 50 μ M, DMF, λ_{ex} ; 505 nm).

Fig. S23 Fluorescence excitation spectra and their comparison with absorption spectra for **HPIB1** (a), **HPIB2** (b), **HPIB3** (c), and **HPIB4** (d) (c; 50 μ M, DMF).

Fig. S24 Absorption spectra (a) with varying compound concentration and normalized representation (b) in DMF for **HPIB1**.

Fig. S25 Absorption spectra (a) with varying compound concentration and normalized representation (b) in DMF for **HPIB2**.

Fig. S26 Absorption spectra (a) with varying compound concentration and normalized representation (b) in DMF for **HPIB3**.

Fig. S27 Absorption spectra (a) with varying compound concentration and normalized representation (b) in DMF for **HPIB4**.

Fig. S28 Emission spectra (a) with varying compound concentration and normalized representation (b) in DMF for **HPIB1**.

Fig. S29 Emission spectra (a) with varying compound concentration and normalized representation (b) in DMF for **HPIB2**.

Fig. S30 Emission spectra (a) with varying compound concentration and normalized representation (b) in DMF for **HPIB3**.

Fig. S31 Emission spectra (a) with varying compound concentration and normalized representation (b) in DMF for **HPIB4**.

Fig. S32 Emission spectra (a) and normalized representation (b) in different solvents with varying polarities for HPIB1 (c; 50μ M).

Fig. S33 Emission spectra (a) and normalized representation (b) in different solvents with varying polarities for **HPIB3** (c; 50μ M).

Fig. S34 Emission spectra (a) and normalized representation (b) in different solvents with varying polarities for HPIB4 (c; 50μ M).

Fig. S35 Absorption spectra (a) and normalized representation (b) in different solvents with varying polarities for **HPIB1** (c; 50μ M).

Fig. S36 Absorption spectra (a) and normalized representation (b) in different solvents with varying polarities for **HPIB2** (c; 50μ M).

Fig. S37 Absorption spectra (a) and normalized representation (b) in different solvents with varying polarities for **HPIB3** (c; 50μ M).

Fig. S38 Absorption spectra (a) and normalized representation (b) in different solvents with varying polarities for **HPIB4** (c; 50μ M).

Fig. S39 Absorption spectra (a) and normalized representation (b) in DMF/water mixture with varying water volume fractions for **HPIB2** (c; 50μ M).

Fig. S40 Absorption spectra (a) and normalized representation (b) in DMF/water mixture with varying water volume fractions for **HPIB3** (c; 50μ M).

Fig. S41 Absorption spectra (a) and normalized representation (b) in DMF/water mixture with varying water volume fractions for **HPIB4** (c; 50μ M).

Fig. S42 Variation in emission intensity in DMF/water mixture with varying water volume fractions for HPIB1–HPIB4 (c; 50μ M).

Fig. S43 Time-resolved fluorescence decay profile ($\lambda_{ex} = 482 \text{ nm}$) for HPIB1 (a), HPIB2 (b), HPIB3 (c) and HPIB4 (d) in DMF/water mixture with varying water volume fractions (c; 50 μ M).

Fig. S44 Dynamic light scattering (DLS) spectra of aggregates for **HPIB1** (a), **HPIB2** (b), **HPIB3** (c), and **HPIB4** (d) in DMF/water mixture at f_w of 99% (c; 50 μ M).

Fig. S45 Absorption spectra of **HPIB1** (a), **HPIB2** (b), **HPIB3** (c) and **HPIB4** (d) in methanol/glycerol mixture with varying glycerol volume fractions (c; 50μ M).

Fig. S46 (a) Emission spectra (c; 50 μ M, DMF, λ_{ex} ; 505 nm) and, (b) time-resolved fluorescence decay profile ($\lambda_{ex} = 482$ nm and $\lambda_{em} = ~535$ nm), at different viscosities of medium (in methanol/glycerol mixtures) (c) plot of fluorescence quantum yield (Φ_f) as a function of viscosity; the inset shows the linearity in the entire range of viscosity under investigation obtained in the log plot, (d) plot of fluorescence lifetime (τ_f) as a function of viscosity; the inset shows the linearity of viscosity under investigation obtained in the log plot, (d) plot of fluorescence lifetime (τ_f) as a function of viscosity; the inset shows the linearity in the entire range of viscosity under investigation obtained in the log plot according to the Förster–Hoffmann equation for **HPIB2**.

Fig. S47 (a) Emission spectra (c; 50 μ M, DMF, λ_{ex} ; 505 nm) and, (b) time-resolved fluorescence decay profile ($\lambda_{ex} = 482$ nm and $\lambda_{em} = -535$ nm), at different viscosities of medium (in methanol/glycerol mixtures) (c) plot of fluorescence quantum yield (Φ_f) as a function of viscosity; the inset shows the linearity in the entire range of viscosity under investigation obtained in the log plot, (d) plot of fluorescence lifetime (τ_f) as a function of viscosity; the inset shows the linearity in the entire range of viscosity under investigation obtained in the log plot, (d) plot of fluorescence lifetime (τ_f) as a function of viscosity; the inset shows the linearity in the entire range of viscosity under investigation obtained in the log plot according to the Förster–Hoffmann equation for **HPIB3**.

Fig. S48 (a) Emission spectra (c; 50 μ M, DMF, λ_{ex} ; 505 nm) and, (b) time-resolved fluorescence decay profile ($\lambda_{ex} = 482$ nm and $\lambda_{em} = ~535$ nm), at different viscosities of medium (in methanol/glycerol mixtures) (c) plot of fluorescence quantum yield (Φ_f) as a function of viscosity; the inset shows the linearity in the entire range of viscosity under investigation obtained in the log plot, (d) plot of fluorescence lifetime (τ_f) as a function of viscosity; the inset shows the linearity of viscosity under investigation obtained in the log plot, (d) plot of fluorescence lifetime (τ_f) as a function of viscosity; the inset shows the linearity in the entire range of viscosity under investigation obtained in the log plot according to the Förster–Hoffmann equation for **HPIB4**.

Fig. S49 (a) J-dimer structure due to $C-H\cdots\pi$ interactions. (b) J-aggregates due to $C-H\cdots\pi$ interactions. (c) Dimer structure due to $B-F\cdots H-C$ interaction. (d) Extended view of the J-clusters due to $C-H\cdots\pi$ and $B-F\cdots H-C$ type interactions extracted from single crystal XRD data of **HPIB1**.

Fig. S50 (a) Extended view of the J-clusters due to $C-H\cdots\pi$ and $B-F\cdotsH-C$ type interactions extracted from single crystal XRD data of **HPIB2**.

Fig. S51 (a) Extended view of the J-clusters due to $B-F\cdots H-C$ and $B-F\cdots \pi$ type interactions extracted from single crystal XRD data of **HPIB3**.

Fig. S52 (a) Extended view of the J-clusters due to $C-H\cdots\pi$ and $B-F\cdots\pi$ type interactions extracted from single crystal XRD data of **HPIB4**.

Fig. S53 DFT optimized Structure for HPIB1 (a), HPIB2 (b), HPIB3 (c) and HPIB4 (d).

Fig. S54 UV/Vis spectra of **HPIB1** (a), **HPIB2** (b), **HPIB3** (c) and **HPIB4** (d) from TD-DFT calculations.

Solvents	Fluorescence quantum yields (Φ_f)								
	HPIB1	HPIB2	HPIB3	HPIB4					
Hexane	0.037	0.067	0.007	0.009					
Benzene	0.130	0.577	0.578	0.172					
Toluene	0.107	0.560	0.579	0.179					
Chloroform	0.103	0.371	0.467	0.089					
THF	0.072	0.338	0.413	0.071					
DCM	0.097	0.370	0.398	0.088					
DMSO	0.032	0.047	0.063	0.027					
DMF	0.039	0.053	0.059	0.033					
MeCN	0.017	0.044	0.019	0.012					
МеОН	0.011	0.013	0.016	0.014					

Table S1 Calculated fluorescence yield (Φ_f) in different solvents for HPIB1–HPIB4

[Fluorescence quantum yield (Φ_F) for these compounds (**HPIB1–HPIB4**) have been calculated relative to rhodamine 6G dye (H₂O, $\lambda_{ex} = 530$ nm, $\lambda_{em} = 552$ nm, $\Phi = 0.95$) as a reference using the formula [($\Phi_F = \Phi_R \times (I_T/I_R) \times (A_R/A_T) \times (\eta_T^2 / \eta_R^2)$], where Φ = quantum yield, I = area under the curve of emission spectrum, A = absorbance at λ_{ex} , η = refractive index of solvent. The subscript R and T denote values for the reference and test samples respectively. Stock solutions for **HPIB1–HPIB4** have been prepared in DMF.] **Table S2.** Fluorescence lifetime (τ_f) variation at different viscosities (in methanol/glycerolmixtures) for HPIB1–HPIB4

Glycerol volume fractions	Viscosity (n)/cP	osity Average life-time (τ _f)/ns						
nuctions	(1)/01	HPIB1	HPIB2	HPIB3	HPIB4			
0%	0.6	1.10	1.20	1.11	1.10			
10%	1.8	1.30	1.51	1.39	1.19			
20%	5.2	1.61	1.91	1.78	1.42			
30%	13.2	1.79	2.39	2.04	1.69			
40%	30.6	2.11	2.60	2.30	1.80			
50%	66.0	2.32	3.01	2.50	1.95			
60%	133.2	2.73	3.59	3.10	2.21			
70%	253.5	3.05	4.21	3.50	2.39			
80%	458.6	3.41	4.61	3.81	2.60			
90%	793.0	3.62	5.51	4.22	2.85			

(Average lifetime is given; ns = nanosecond; excitation wavelength is 482 nm)

Table S3 Fluorescence quantum yield (Φ_f) variation at different viscosities (in methanol/glycerol mixtures) for **HPIB1–HPIB4**

Glycerol Volume	Viscosity	Fluorescence quantum yield (Φ_f)					
Iractions	(<i>η</i>)/CP	HPIB1	HPIB2	HPIB3	HPIB4		
0%	0.6	0.009	0.012	0.015	0.012		
10%	1.8	0.021	0.019	0.021	0.021		
20%	5.2	0.036	0.042	0.037	0.039		
30%	13.2	0.050	0.062	0.065	0.071		
40%	30.6	0.08	0.090	0.117	0.125		
50%	66.0	0.151	0.140	0.163	0.180		
60%	133.2	0.235	0.214	0.242	0.301		
70%	253.5	0.349	0.325	0.353	0.413		
80%	458.6	0.527	0.491	0.489	0.553		
90%	793.0	0.670	0.697	0.673	0.693		

[Fluorescence quantum yield (Φ_F) for these compounds (**HPIB1–HPIB4**) have been calculated relative to rhodamine 6G dye (H₂O, $\lambda_{ex} = 530$ nm, $\lambda_{em} = 552$ nm, $\Phi = 0.95$) as a reference using the formula [($\Phi_F = \Phi_R \times (I_T/I_R) \times (A_R/A_T) \times (\eta_T^2 / \eta_R^2)$], where $\Phi =$ quantum yield, I = area under the curve of emission spectrum, A = absorbance at λ_{ex} , $\eta =$ refractive index of solvent. The subscript R and T denote values for the reference and test samples respectively. Stock solutions for **HPIB1–HPIB4** have been prepared in DMF.]

Glycerol Volume	Viscosity (n)/cP	HP	IB1	HP	HPIB2		HPIB3		HPIB4	
fractions	(1)/	Kr	Knr	Kr	Knr	Kr	Knr	Kr	Knr	
0%	0.6	0.0081	0.90	0.010	0.82	0.013	0.89	0.011	0.90	
10%	1.8	0.0161	0.75	0.012	0.65	0.015	0.70	0.018	0.82	
20%	5.2	0.0225	0.60	0.022	0.60	0.021	0.54	0.027	0.68	
30%	13.2	0.0280	0.53	0.026	0.52	0.032	0.46	0.042	0.58	
40%	30.6	0.038	0.44	0.035	0.43	0.051	0.38	0.069	0.49	
50%	66.0	0.0650	0.37	0.046	0.28	0.065	0.33	0.092	0.42	
60%	133.2	0.086	0.28	0.060	0.22	0.078	0.24	0.014	0.32	
70%	253.5	0.114	0.21	0.077	0.17	0.100	0.18	0.170	0.25	
80%	458.6	0.154	0.14	0.110	0.11	0.130	0.13	0.210	0.17	
90%	793.0	0.185	0.09	0.130	0.054	0.160	0.077	0.240	0.11	

Table S4 Variation in radiative (kr) and non-radiative (knr) rate constants in methanol/glycerol

 mixture at different viscosities for HPIB1–HPIB4

(kr and knr are calculated using the formula, $kr=\Phi_f\!/\tau_f$ and $knr=(1\!-\!\Phi_f)\!/\tau_f)$

Table S5 Selected bond distances extracted from the crystal structure of HPIB1–HPIB4 and

 their comparison with DFT optimized structure

Bond length (Å)	HPIB1		HPIB2		HPIB3		HPIB4	
	Crystal	DFT optimized	Crystal	DFT optimized	Crystal	DFT optimized	Crystal	DFT optimized
N1-B1	1.534(7)	1.567	1.539(4)	1.568	1.548(3)	1.568	1.557(3)	1.568
N2-B1	1.525(7)	1.567	1.533(4)	1.568	1.547(3)	1.568	1.544(3)	1.568
B1-F1	1.350(7)	1.382	1.416(5)	1.381	1.382(2)	1.382	1.358(3)	1.381
B1-F2	1.407(7)	1.385	1.416(5)	1.384	1.376(2)	1.384	1.387(3)	1.384
C5-C10	1.392(6)	1.489	1.492(3)	1.490	1.493(2)	1.490	1.493(2)	1.490
01–C11	1.355(5)	1.339	1.342(3)	1.338	1.3441(19)	1.337	1.339(2)	1.338
C12-C16	1.475(6)	1.469	1.467(4)	1.469	1.468(2)	1.469	1.468(3)	1.469
C16-N3	1.321(5)	1.329	1.324(3)	1.328	1.328(2)	1.329	1.323(2)	1.328
C17–C18	1.376(5)	1.385	1.372(4)	1.386	1.376(2)	1.386	1.367(3)	1.385
C17–C19	1.465(6)	1.474	1.472(4)	1.474	1.474(2)	1.474	1.367(3)	1.474
C18-C25	1.469(6)	1.477	1.484(3)	1.477	1.474(2)	1.477	1.477(3)	1.477
C18-N4	1.405(5)	1.403	1.390(3)	1.402	1.398(2)	1.402	1.395(2)	1.404
C16-N4	1.371(5)	1.382	1.373(3)	1.381	1.3740(19)	1.380	1.373(2)	1.382
N4-C31	1.449(5)	1.436	1.445(3)	1.436	1.442(2)	1.436	1.441(2)	1.434

Table S6 Selected bond angles extracted from the crystal structure of HPIB1-HPIB4 and comparison with DFT optimized structure

Bond Angle	HPIB1		HPIB2		HPIB3		HPIB4	
	Crystal	DFT	Crystal	DFT	Crystal	DFT	Crystal	DFT
F1-B1-F2	108.8(5)	111.47	108.9(3)	111.53	109.76(16)	111.51	110.61(18)	111.53
N2-B1-N1	107.4(4)	104.89	106.4(2)	104.89	105.40(14)	104.91	104.75(16)	104.92
C4-C5-C10	121.4(4)	121.03	120.2(2)	120.95	119.85(15)	120.88	120.29(17)	120.78
C10-C5-C6	118.3(4)	119.03	119.5(2)	118.94	119.60(14)	119.01	119.09(17)	119.05
C11-C10-C5	119.0(4)	119.03	120.8(2)	121.06	120.15(14)	120.91	120.49(16)	120.85
C15-C10-C5	121.5(4)	121.04	119.1(2)	118.89	119.83(14)	118.99	119.20(16)	119.06
O1-C11-C10	115.3(4)	117.69	117.7(2)	117.76	117.81(14)	117.72	116.95(16)	117.74
C16-N3-C17	108.5(3)	108.31	108.1(2)	108.26	107.57(14)	108.27	108.01(15)	108.32
N3-C17-C19	118.7(4)	120.42	120.6(2)	120.47	120.27(14)	120.49	120.11(16)	120.48
C17-C18-C25	131.3(4)	131.22	131.5(2)	131.18	131.08(16)	131.13	130.66(18)	131.17
C18-N4-C16	107.6(3)	107.41	107.5(2)	107.37	107.44(13)	107.38	107.21(15)	107.37
C16-N4-C31	129.0(4)	128.20	129.2(2)	128.17	128.92(13)	128.19	128.82(16)	128.27

Table S7 Dihedral angles extracted from the crystal structure of **HPIB1-HPIB4** and comparisonwith DFT optimized structure

	HPIB1		HPIB2	HPIB2		HPIB3		HPIB4	
	Crystal	DFT	Crystal	DFT	Crystal	DFT	Crystal	DFT	
Between BODIPY core and phenyl ring A	80.93°	66.95°	61.85°	66.16°	60.68°	66.45°	71.22°	66.95°	
Between imidazole ring and phenyl ring A	3.08°	15.40°	6.34°	15.70°	12.86°	14.78°	3.13°	15.40°	
Between imidazole ring and phenyl ring B	86.68°	71.56°	83.83°	73.53°	73.94°	73.67°	87.05°	71.56°	
Between imidazole ring and phenyl ring C	76.34°	58.15°	72.21°	58.35°	50.57°	58.04°	78.27°	58.15°	
Between imidazole ring and phenyl ring D	3.39°	28.86	3.34°	28.90°	32.16°	28.99°	23.21°	28.86°	

Compounds	E/ev	E/nm	Oscillator	Contributions
			strength	
HPIB1	2.26	548.53	0.0431	H->L (98%), H-4->L (2%)
	3.16	391.74	0.0541	H-4->L (90%), H-3->L (5%), H->L (2%)
	3.57	347.76	0.5159	H-3->L (70%), H-2->L (18%), H-11->L (6%), H-4->L (6%)
	3.87	320.15	0.0455	H-8->L (29%), H-7->L (69%)
HPIB2	2.32	533.56	0.0443	H->L (97%), H-4->L (2%)
	3.21	385.76	0.0388	H-4->L (93%), H-3->L (3%), H->L (2%)
	3.56	349.64	0.5123	H-3->L (77%), H-2->L (13%) H-11->L (7%), H-4->L (3%)
	3.84	322.68	0.0474	H-7->L (98%)
НРІВЗ	2.31	536.89	0.0439	H->L (97%), H-4->L (2%)
	3.21	387.02	0.0382	H-4->L (93%), H-3->L (3%), H->L (2%)
	3.55	349.49	0.5127	H-3->L (77%), H-2->L (13%) H-11->L (7%), H-4->L (3%)
	3.84	322.64	0.0472	H-7->L (95%), H-8->L (3%)
HPIB4	2.35	528.42	0.0432	H->L (97%), H-4->L (2%)
	3.24	382.45	0.0368	H-4->L (93%), H-3->L (2%), H->L (2%)
	3.55	349.36	0.5149	H-3->L (78%), H-2->L (13%) H-11->L (6%), H-4->L (3%)
	3.84	322.629	0.0478	H-7->LUMO (99%)

 Table S8 Electronic transitions obtained through TD-DFT calculation for HPIB1-HPIB4