Luminescent Metal-Organic Framework based Phosphor for the

Detection of Toxic Oxoanions in Aqueous Medium

Debal Kanti Singha,^{a,b} Prakash Majee,^b Sayani Hui,^a Sudip Kumar Mondal^{b*} and Partha Mahata^{a*}

^aDepartment of Chemistry, Jadavpur University, Kolkata-700032, India. Email: <u>parthachem@gmail.com</u>

^bDepartment of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West

Bengal, India. Email: sudip.mondal@visva-bharati.ac.in

ELECTRONIC SUPPLEMENTARY INFORMATION

Bond	Distances, Å	Bond	Distances, Å
Y(1)-O(5)	2.2604(14)	Y(1)-O(3)	2.3934(14)
Y(1)-O(6)	2.2704(14)	Y(1)-O(8)	2.4003(17)
Y(1)-O(1)	2.2953(13)	Y(1)-O(4)	2.4019(13)
Y(1)-O(2)	2.3904(14)	Y(1)-O(7)	2.4117(16)

Table S1: Selected bond distances (Å) observed in $[Y(FDA)(OX)_{0.5}(H_2O)_2]$.H₂O, 1a.

Table S2: Selected bond angles observed in $[Y(FDA)(OX)_{0.5}(H_2O)_2]$.H₂O, 1a.

Angle	Amplitude (°)	Angle	Amplitude (°)
O(5)-Y(1)-O(6)	96.75(5)	O(3)-Y(1)-O(8)	71.58(6)
O(5)-Y(1)-O(1)	143.67(5)	O(5)-Y(1)-O(4)	74.39(5)
O(6)-Y(1)-O(1)	100.62(5)	O(6)-Y(1)-O(4)	77.72(5)
O(5)-Y(1)-O(2)	142.35(5)	O(1)-Y(1)-O(4)	140.49(5)
O(6)-Y(1)-O(2)	71.51(5)	O(2)-Y(1)-O(4)	68.22(5)
O(1)-Y(1)-O(2)	73.84(5)	O(3)-Y(1)-O(4)	76.46(5)
O(5)-Y(1)-O(3)	100.12(5)	O(8)-Y(1)-O(4)	128.18(6)
O(6)-Y(1)-O(3)	143.88(6)	O(5)-Y(1)-O(7)	76.82(6)
O(1)-Y(1)-O(3)	84.06(5)	O(6)-Y(1)-O(7)	73.26(6)
O(2)-Y(1)-O(3)	75.66(5)	O(1)-Y(1)-O(7)	78.03(6)
O(5)-Y(1)-O(8)	72.45(6)	O(2)-Y(1)-O(7)	129.17(6)
O(6)-Y(1)-O(8)	144.39(7)	O(3)-Y(1)-O(7)	141.78(6)
O(1)-Y(1)-O(8)	74.88(6)	O(8)-Y(1)-O(7)	71.25(7)
O(2)-Y(1)-O(8)	136.40(6)	O(4)-Y(1)-O(7)	135.88(6)

Sl. No	K ₂ CrO ₄	<i>a</i> ₁	<i>a</i> ₂	$ au_1$	τ2	$a_1\tau_1 + a_2\tau_2$
1	0 μΜ	0.74	0.26	1.2	6.1	2.5 ns
2	0.312 μM	0.72	0.28	1.2	5.8	2.5 ns
3	1.25 μM	0.71	0.29	1.2	5.8	2.5 ns
4	5.00 µM	0.72	0.28	1.2	5.9	2.5 ns
5	10.0 µM	0.71	0.29	1.1	5.7	2.4 ns
Sl. No	KMnO ₄	<i>a</i> ₁	a ₂	$ au_1$	τ2	$a_1\tau_1 + a_2\tau_2$
1	0 μΜ	0.72	0.28	1.2	5.8	2.5 ns
2	0.312 μM	0.74	0.26	1.3	6.4	2.6 ns
3	1.25 μM	0.73	0.27	1.2	6.2	2.6 ns
4	5.00 µM	0.74	0.26	1.2	6.3	2.5 ns
5	10.0 µM	0.72	0.28	1.2	6.0	2.5 ns
Sl. No	Na ₂ HPO ₄	<i>a</i> ₁	a ₂	$ au_1$	τ2	$a_1\tau_1 + a_2\tau_2$
1	0 μΜ	0.75	0.25	1.3	6.4	2.6 ns
2	1.25 μM	0.73	0.27	1.2	6.2	2.5 ns
3	2.50 µM	0.74	0.26	1.3	6.4	2.6 ns
4	5.00 µM	0.73	0.27	1.2	6.0	2.5 ns
5	7.50 μM	0.74	0.26	1.2	6.3	2.5 ns
6	10.0 µM	0.72	0.28	1.1	5.8	2.4 ns

Table S3: Average lifetime of the ligand center (at 375 nm) of compound 1 after the addition of different analytes.

Fig. S1: Powder XRD (CuK α) patterns: (a) simulated from single crystal X-ray data of $[Y(FDA)(Ox)_{0.5}(H_2O)_2] \cdot H_2O$, **1a**, (b) hydrothermally synthesized $[Y(FDA)(Ox)_{0.5}(H_2O)_2] \cdot H_2O$, **1a** and (c) hydrothermally synthesized $[Tb_{0.2}Y_{0.8}(FDA)(Ox)_{0.5}(H_2O)_2] \cdot H_2O$, **1**.

Fig. S2: Thermogravimetric analysis (TGA) of compound 1 in nitrogen atmosphere.

Fig. S3: Thermogravimetric analysis (TGA) of compound 1a in nitrogen atmosphere.

Fig. S4: N_2 sorption isotherm of compound 1.

Fig. S5: N₂ sorption isotherm of compound **1a**.

Fig. S6: SEM images of compound 1.

Fig. S7: Excitation spectra (monitored at $\lambda_{em} = 545$ nm), ligand center emission spectra and Tb center luminescence spectra (excited at 265 nm) of compound 1.

Fig. S8: Emission spectra of compound 1 in aqueous dispersion upon incremental addition of aqueous solution of PO_4^{3-} ions ($\lambda_{ex} = 265 \text{ nm}$). Final concentration of PO_4^{3-} ions in the medium is indicated in the legend.

Fig. S9: Emission spectra of compound 1 in aqueous dispersion upon incremental addition of aqueous solution of HPO_4^{2-} ions ($\lambda_{ex} = 265$ nm). Final concentration of HPO_4^{2-} ions in the medium is indicated in the legend.

Fig. S10: Emission spectra of compound **1** in aqueous dispersion upon incremental addition of aqueous solution of $H_2PO_4^-$ ions ($\lambda_{ex} = 265 \text{ nm}$). Final concentration of $H_2PO_4^-$ ions in the medium is indicated in the legend.

Fig. S11: Emission spectra of compound **1** in aqueous dispersion upon incremental addition of aqueous solution of CO_3^{2-} ions ($\lambda_{ex} = 265$ nm). Final concentration of CO_3^{2-} ions in the medium is indicated in the legend.

Fig. S12: Emission spectra of compound **1** in aqueous dispersion upon incremental addition of aqueous solution of I⁻ ions ($\lambda_{ex} = 265$ nm). Final concentration of I⁻ ions in the medium is indicated in the legend.

Fig. S13: Emission spectra of compound 1 in aqueous dispersion upon incremental addition of aqueous solution of F⁻ ions ($\lambda_{ex} = 265$ nm). Final concentration of F⁻ ions in the medium is indicated in the legend.

Fig. S14: Emission spectra of compound **1** in aqueous dispersion upon incremental addition of aqueous solution of Cl⁻ ions ($\lambda_{ex} = 265$ nm). Final concentration of Cl⁻ ions in the medium is indicated in the legend.

Fig. S15: Emission spectra of compound 1 in aqueous dispersion upon incremental addition of aqueous solution of Br ions ($\lambda_{ex} = 265$ nm). Final concentration of Br ions in the medium is indicated in the legend.

Fig. S16: Emission spectra of compound 1 in aqueous dispersion upon incremental addition of aqueous solution of NO_2^- ions ($\lambda_{ex} = 265 \text{ nm}$). Final concentration of NO_2^- ions in the medium is indicated in the legend.

Fig. S17: Emission spectra of compound **1** in aqueous dispersion upon incremental addition of aqueous solution of S²⁻ ions ($\lambda_{ex} = 265$ nm). Final concentration of S²⁻ ions in the medium is indicated in the legend.

Fig. S18: Emission spectra of compound **1** in aqueous dispersion upon incremental addition of aqueous solution of NO₃⁻ ions ($\lambda_{ex} = 265$ nm). Final concentration of NO₃⁻ ions in the medium is indicated in the legend.

Fig. S19: Emission spectra of compound **1** in aqueous dispersion upon incremental addition of aqueous solution of SO_4^{2-} ions ($\lambda_{ex} = 265$ nm). Final concentration of SO_4^{2-} ions in the medium is indicated in the legend.

Fig. S20: Emission spectra of compound **1** in aqueous dispersion upon incremental addition of aqueous solution of CH_3COO^- ions ($\lambda_{ex} = 265$ nm). Final concentration of CH_3COO^- ions in the medium is indicated in the legend.

Fig. S21: Plot of luminescence intensity vs concentration of CrO_4^{2-} .

Fig. S22: Plot of luminescence intensity vs concentration of MnO₄-.

Fig. S23: Plot of luminescence intensity vs concentration of phosphate.

Fig. S24: Plot of I_0/I of compound 1 (at 545 nm) vs concentration of analytes in the lower concentration range of analytes (up to 3.75 μ M). I_0 and I are the luminescence intensity in absence and presence of analyte, respectively.

Fig. S25: (A) Emission spectra of compound **1** in aqueous solution upon the incremental addition of MnO₄⁻ solution in presence of 12.5 μ M of each quenchable metal ions solution ($\lambda_{ex} = 265 \text{ nm}$). (B) Corresponding bar diagram showing the luminescence intensity (monitored at 545 nm) after the sequential addition of the analytes. The composition and concentration of the system were as follows: (a) compound **1** in aqueous dispersion, (b) a + 12.5 μ M F⁻, (c) b + 12.5 μ M Cl⁻, (d) c + 12.5 μ M Br⁻, (e) d + 12.5 μ M I⁻, (f) e + 12.5 μ M NO₃⁻, (g) f + 12.5 μ M NO₂⁻, (h) g + 12.5 μ M SO₄²⁻, (i) h + 12.5 μ M CO₃²⁻, (j) i + 12.5 μ M CO₃⁻, (m) k + 2.50 μ M MnO₄⁻, (m) k + 3.75 μ M MnO₄⁻, (o) k + 5.00 μ M MnO₄⁻, (p) k + 6.25 μ M MnO₄⁻, (r) k + 7.50 μ M MnO₄⁻.

Fig. S26: (A) Emission spectra of compound **1** in aqueous solution upon the incremental addition of HPO₄²⁻ solution in presence of 12.5 μ M of each quenchable metal ions solution ($\lambda_{ex} = 265 \text{ nm}$). (B) Corresponding bar diagram showing the luminescence intensity (monitored at 545 nm) after the sequential addition of the analytes. The composition and concentration of the system were as follows: (a) compound **1** in aqueous dispersion, (b) a + 12.5 μ M F⁻, (c) b + 12.5 μ M Cl⁻, (d) c + 12.5 μ M Br, (e) d + 12.5 μ M I⁻, (f) e + 12.5 μ M NO₃⁻, (g) f + 12.5 μ M NO₂⁻, (h) g + 12.5 μ M SO₄²⁻, (i) h + 12.5 μ M CO₃²⁻, (j) i + 12.5 μ M CH₃COO⁻, (k) j + 12.5 μ M S²⁻, (l) k + 1.25 μ M HPO₄²⁻, (m) k + 2.50 μ M HPO₄²⁻, (n) k + 3.75 μ M HPO₄²⁻, (o) k + 5.00 μ M HPO₄²⁻, (p) k + 6.25 μ M HPO₄²⁻, (r) k + 7.50 μ M HPO₄²⁻.

Fig. S27: Powder XRD (CuK α) patterns of (a) compound **1a** simulated from single crystal X-ray data, (b) compound **1** after immersing in the aqueous solution of CrO₄²⁻ for 24 hours, (c) compound **1** after immersing in the aqueous solution of MnO₄⁻ for 24 hours and (d) compound **1** after immersing in the aqueous solution of HPO₄²⁻ for 24 hours.

Fig. S28: Absorption spectra of different anions at the same concentration (~ 200 μ M).

Fig. S29: Absorption spectra of CrO_4^{2-} and emission spectra of compound 1.

Figure S30: Time resolved luminescence decay and the corresponding fitted lines of compound **1** with the gradual addition of CrO_4^2 ions. Final concentrations of metal ions in the medium are indicated in the legend. The instrument response function (prompt) is also shown. The $\lambda_{\text{ex}} = 280$ nm and $\lambda_{\text{em}} = 375$ nm were used in this experiment.

Figure S31: Time resolved luminescence decay and the corresponding fitted lines of compound **1** with the gradual addition of MnO_4 -ions. Final concentrations of metal ions in the medium are indicated in the legend. The instrument response function (prompt) is also shown. The $\lambda_{ex} = 280$ nm and $\lambda_{em} = 375$ nm were used in this experiment.

Fig. S32: Absorption spectra of MnO_4^- and emission spectra of compound 1.

Fig. S33: The luminescence lifetime decay curve of compound **1** and in presence of MnO_4^- ions in aqueous medium at 545 nm. The Tb centre lifetime values are 524 μ s, 327 μ s and 206 μ s after the addition of 0 μ M, 6.25 μ M and 10 μ M MnO_4^- respectively.

Figure S34: Time resolved luminescence decay and the corresponding fitted lines of compound **1** with the gradual addition of HPO_4^{2-} ions. Final concentrations of metal ions in the medium are indicated in the legend. The instrument response function (prompt) is also shown. The $\lambda_{ex} = 280$ nm and $\lambda_{em} = 375$ nm were used in this experiment.

Fig. S35: IR spectra of (a) compound 1, (b) HPO_4^{2-} and (c) compound 1 in presence of HPO_4^{2-} .

List of abbreviations used in the Table 2:

 $L_1 = 2-(4-\operatorname{carboxyphenyl})-1$, 3-dioxoisoindoline-5-carboxylic acid; H_2 btz = 1,5-bis(5-tetrazolo)-3oxapentane; H_3 ttz = 1,2,3-tris-[2-(5-tetrazolo)-ethoxy]propane; $H_3BTB = 1,3,5$ -benzenetribenzoic acid; pdp = 2-(4,6-di(pyridine-2-yl)pyridine-2-yl)pyridine; $C_{20}H_{10}N_2O_4S = 4,4'$ -(benzothiadiazole-4,7-diyl) dibenzoic acid; DEF = N, N'- diethyl formamide; DMF = N, N'- dimethyl formamide; H_2IPA = isophthalic acid; L_2 = 3- pyridylcarboxaldehyde nicotinoylhydrazone; TPOM = tetrakis(4-pyridyloxymethylene)methane; NH_2 -BDC = 2-aminoterephthalic acid; H_3 cpbda = 4,4'-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid; H_6L_3 = hexa[4-(carboxyphenyl)oxamethyl]-3-oxapentane acid; bipy = 2,2'-bipyridine ; bib = 4,4'- di(1 Himidazol-1 -yl)-1,1'-biphenyl; tib = 1,3,5-tri(1 H-imidazol-1-yl)benzene; H₂ATA = 2-aminoterephthalic acid; $L_4 = (E)$ -N'-(pyridin-4-ylmethylene)isonicotinohydrazide; H_2 tza=1H-tetrazolate-5-acetic acid; H_3 cpota = 2-(4-carboxyphenoxy)terephthalic acid; phen = 1,10-phenanthroline; TPPT $= 1-\{4-[4-(1H-1),2,4-\text{triazol-}1-(1H-1),2,$ yl)-phenoxy]phenyl}-1H-1,2,4-triazole; mtrb = 1,3-bis(1,2,4-triazole-4-ylmethyl)benzene; btc = 1,3,5benzenetricarboxylate; H_6L_5 = (hexa[4-(carboxyphenyl)oxamethyl]-3-oxapentane acid); bbib = (1,4-bis(1 H-benzo[d]imidazol-1-yl)benzene); H_4 tptc = p-terphenyl-2.2 ",5 ",5 "'-tetracarboxylate acid; bib = 1,3-bis((imidazol-1-yl) benzene; bpanth =9,10-bis(4-pyridyl)anthracene; H_2 oba =4,4 '-oxybis(benzoic acid); $H_3ddpp = 2,5-di(2',4'-dicarboxylpheny)$ pyridine acid; $H_4mtb = 4-[tris(4-carboxyphenyl)methyl]benzoic acid;$ $H_4L_6 = 5,5'-(1H-2,3,5-triazole-1,4-diyl)$ diisophthalic acid; $H_2ipbpBr = cationic 1-(3,5-dicarboxyphenyl)-$ 4,4'- bipyridinium bromide; $H_2L^a = 2$ -(((2-hydroxy-3-methoxybenzyl)imino)methyl)-6-methoxybenol; Piv = pivalic acid; $HL_7 = 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine; HL_8 = 5-(triazol-1-yl)nicotinic acid; BTC$ = benzene-1,3,5-tricarboxylate; $H_3L^{b}\cdot BF_4 = 2,4,6$ -tricarboxy-1-methylpyridinium tetrafluoroborate; btr = 4,4'-bis(1,2,4-triazole); $H_3L_9 = p$ -terphenyl-3,4",5-tricarboxylic acid; $H_2L_{10} = 1,2$ -phenylenedioxydiacetic acid; $H_3BTB = 1,3,5$ -benzenetribenzoate; $H_3TZI = 5-(1H-tetrazol-5-yl)$ isophthalic acid; $H_3BTB = 1,3,5$ benzenetribenzoic acid and $H_2BDC = 1,4$ -benzenedicarboxylic acid; $H_3L_{11} = (4$ -carboxypiperidyl)-Nmethylenephosphonic acid; TPA = 6-(1H-1,2,4-triazol-1-yl)pyridine-2-carboxylate; L₁₂ = butanedioate; H₂L^c = 4-{bis(4-benzoic)amino}-4H-1,2,4-triazole; L^d = (6-[1-(4-carboxyphenyl)-1H-1,2,3-triazol-4-yl]nicotinic acid); $H_2ppda = 4$ -(pyridin-3-yloxy)-phthalic acid and $H_2ppdc = naphthalene-1, 4$ -dicarboxylic acid.