Electronic Supplementary Material (ESI)

Sandwich-like Si/SiC/nanographite sheet as high performance anode for lithiumion batteries

Yi Zhang^{1,*}, Kai Hu¹, Jinghui Ren¹, Yuping Wu¹, Nengfei Yu¹, Ailing Feng¹, Zhengyong Huang^{2,*}, Zirui Jia³, Guanglei Wu^{3,*}

¹ School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China

² State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400040, China

³ Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Ecotextiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

*Corresponding Authors. E-mail: zhangy@njtech.edu.cn (Yi Zhang); huangzhengyong@cqu.edu.cn (Huangzheng Huang); wuguanglei@qdu.edu.cn (Guanglei Wu).

Figure S1 XRD pattern of NanoG.

Figure S2 Thermogravimetric analysis (TGA) of the Si/SiC/NanoG nanocomposite conducted in air at scan rate of 5 °C min⁻¹.

Figure S3 SEM images of Si/SiC/NanoG nanocomposite (a) and Si/NanoG nanocomposite (b) after sonication.

Figure S4 the cycle performance of NanoG at 100 mA g^{-1} .

Figure S5 the electrode morphologies of Si/SiC/NanoG electrode (a) and Si/NanoG electrode (b) after 100 cycles.

Figure S6 the EIS spectra of Si/SiC/NanoG and Si/NanoG after 100 cycles.

Component	Weight %
Si	28.3
SiC	17.6
Graphite	54.1

Table S1 The components' content of Si/SiC/NanoG nanocomposite.

 Table S2 Performance comparison of our Si/SiC/NanoG anode with other similar anodes.

Anodes	cycle stability	capacity ret	ention Reference	
	initial reversible capacity is 2050		Angewandte Chemie	
Si/C [1]	mAh g^{-1} while it is 1489 mAh g^{-1}	72.6 %	International Edition,	
	after 20 cycles at 100 mA g^{-1}		2006, 45(41): 6896-6899.	
	initial reversible capacity is 1910		Journal of Power Sources	
Si/C [2] mAh g ⁻ after 1	mAh g^{-1} while it is 1356 mAh g^{-1}	71.0 %		
	after 100 cycles at 100 mA g^{-1}		2017, 342: 529-536.	
	initial reversible capacity is 1550		Energy & Environmental	
Si/CNFs [3]	mAh g^{-1} while it is 726 mAh g^{-1}	46.8 %	Science, 2010, 3(1): 124-	
	after 40 cycles at 50 mA g^{-1}		129.	
Si/CNTs [4]	initial reversible capacity is 1250		Journal of Power	
	mAh g^{-1} while it is 727 mAh g^{-1}	58.2 %	Sources, 2018, 381: 156-	
	after 100 cycles at 100 mA g^{-1}		163.	
Si/SiC/ CNTs [5]	initial reversible capacity is 1379		Carbon 2016 107: 600-	
	mAh g^{-1} while it is 938 mAh g^{-1}	68.0 %	Caroon, 2010, 107. 000-	
	after 100 cycles at 100 mA g^{-1}		606	

	initial reversible capacity is 1702.9	Journal of Power		
Si/graphite [6]	mAh g^{-1} while it is 975.7 mAh g^{-1}	57.3 %	Sources, 2015, 281: 425-	
	after 100 cycles at 100 mA g^{-1}		431.	
Si/graphite [7]	initial reversible capacity is 1350		Chemical	
	mAh g^{-1} while it is 1000 mAh g^{-1}	74.1 %	Communications, 2005,	
	after 100 cycles at 74 mA g^{-1}		12(12): 1566-1568	
Si/SiO _x / graphite [8]	initial reversible capacity is 1014		Journal of Materials	
	mAh g^{-1} while it is 710 mAh g^{-1}	70.0 %	Chemistry, 2010, 20(23):	
	after 100 cycles at 100 mA g^{-1}		4854-4860.	
Si/graphene [9]	initial reversible capacity is 1750		Electrochemistry	
	mAh g^{-1} while it is 1168 mAh g^{-1}	66.7 %	Communications, 2010,	
	after 30 cycles at 100 mA g^{-1}		12(2): 303-306.	
Si/graphite@	initial reversible capacity is 820.7			
	mAh g^{-1} while it is 500.0 mAh g^{-1}	60.9 %	Electrochimica	
graphene [10]	after 50 cycles at 100 mA g^{-1}		Acta, 2014, 116: 230-236.	
Si@graphene	initial reversible capacity is 2670		International Journal of	
/carbon	mAh g^{-1} while it is 1604 mAh g^{-1}	60.1 %	Hydrogen Energy, 2016,	
fiber[11]	after 100 cycles at 100 mA g^{-1}		41(46): 21268-21277.	
Si/SiC/ NanoG	initial reversible capacity is 1135.4			
	mAh g^{-1} while it is 912.7 mAh g^{-1}	80.4 %	This work	
	after 100 cycles at 100 mA g^{-1}			

Reference:

- [1] S.H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu, Angew. Chem. Int. Ed., 2006, 45, 6896-6899.
- [2] J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, Y. Wang, J. Power Sources, 2017, 342, 529-536.
- [3] L. Ji, X. Zhang, Energy & Environmental Science, 2010, **3**, 124-129.
- [4] X. Zhou, Y. Liu, C. Du, Y. Ren, T. Mu, P. Zuo, G. Yin, Y. Ma, X. Cheng, Y. Gao, J. Power Sources, 2018, 381, 156-163.
- [5] Y. Jiang, H. Wang, B. Li, Y. Zhang, C. Xie, J. Zhang, G. Chen, C. Niu, Carbon, 2016, 107, 600-606.
- [6] Y. Zhang, Y. Jiang, Y. Li, B. Li, Z. Li, C. Niu, J. Power Sources, 2015, 281, 425-431.
- [7] M. Holzapfel, H. Buqa, W. Scheifele, P. Novák, F.-M. Petrat, Chem. Commun., 2005, 12, 1566-1568.
- [8] C. M. Park, W. Choi, Y. Hwa, J.-H. Kim, G. Jeong, H.-J. Sohn, J. Mater. Chem., 2010, 20, 4854-4860.
- [9] S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J.A. Stride, S.-X. Dou, Electrochem. Commun. 2010, 12, 303-306.
- [10] M. Su, Z. Wang, H. Guo, X. Li, S. Huang, W. Xiao, L. Gan, Electrochim. Acta, 2014, 116, 230-236.
- [11] H. Tao, L. Xiong, S. Zhu, X. Yang, L. Zhang, Int. J. Hydrogen Energy, 2016, 41, 21268-21277.