Supporting Information

Visible-Light-Driven Hydrogen Evolution on a Polyoxometalate-Based Copper Molecular Catalyst

Yuan-Sheng Ding,*,a Hui-Ying Wanga and Yong Ding*,b

^aSchool of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, P.R. China.

^bState Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.

*E-mail: chxu1970@163.com; dingyong1@lzu.edu.cn.

Table of Contents

1.	Supplementary Structural Figures	Page S2
2.	Visible-Light-Driven HER	Pages S3–S10
3.	Quenching Mechanism Studies	Pages S11–S14
4.	Stability Studies	Pages S15–S19
5.	Supplementary Physical Characterizations	Page S20
6.	References	Page S21

1. Supplementary Structural Figures

Fig. S1 Ball-and-stick representations of the structure of (a) compound 1 and (b) $\{Cu_5\}$ core in 1. W, gray sphere; Si, orange sphere; O, red sphere; Cu, blue sphere.

2. Visible-Light-Driven HER

 Table S1. TON and TOF of visible light-driven HER catalyzed by different concentrations of catalysts^[a].

Catalysts	Catalyst concentration (µM)	TON ^[b]	$\mathrm{TOF}^{[c]}\left[\mathrm{h}^{-1} ight]$
1	2	718.9 ± 16.4	149.0 ± 14.4
1	5	401.7 ± 5.6	80.2 ± 5.3
1	10	234.1 ± 2.9	52.9 ± 1.6
1	15	182.1 ± 2.1	42.9 ± 1.8
1	20	156.7 ± 1.6	37.5 ± 1.4
2	2	582.7 ± 14.1	134.8 ± 11.0
2	5	301.3 ± 4.9	73.5 ± 4.2
2	10	187.4 ± 2.1	43.0 ± 2.3
2	15	151.3 ± 1.6	33.6 ± 1.6
2	20	131.6 ± 1.4	32.7 ± 3.8
3	20	87.0 ± 1.6	23.3 ± 1.3
Cu(NO ₃) ₂	20	25.3 ± 1.4	6.0 ± 0.9
Cu(NO ₃) ₂	100	9.2 ± 0.3	2.4 ± 0.2

[a] Conditions: 100 W white LED light; catalysts (2–100 μ M) in a 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)]⁺ (0.2 mM) after 6 h of visible-light irradiation, vigorous stirring (1.0×10³ rpm). [b] TON = mol of H₂/mol of catalyst. [c] TOF_{initial} = mol of H₂/(mol of catalyst × 1.0 h), based on the amount of H₂ produced after 1.0 h of visible-light irradiation.

Catalysts	Representative conditions	TON	TOF	Ref.
1	100 W white LED light, 0.2	718.9 ± 16.4	$149.0 \pm 14.4 \ h^{-1}$	
2	mM $[Ir(ppy)_2(dtbbpy)]^+$, 2 mL	582.7 ± 14.1	$134.8 \pm 11.0 \ h^{-1}$	This
3	TEOA, 11 mL CH ₃ CN, 33 mL	87.0 ± 1.6	$23.3 \pm 1.3 \ h^{-1}$	work
Cu(NO ₃) ₂	DMF, and 4 mL H_2O	9.2	$2.4 \pm 0.2 \ h^{-1}$	
[α-Sn ₄ (SiW ₉ O ₃₄) ₂] ^{28–}	300 W Xe lamp (400 nm cut-off filter), H_2PtCl_6 co-catalyst (0.5 g), and 270 mL MeOH (20 vol%) solution	1.4	0.025 h ⁻¹	1
$[Mn_4(H_2O)_2(VW_9O_{34})_2]^{10-}$	LED light (20 mW, 455 nm), 0.67 mM [Ru(bpy) ₃]Cl ₂ , TEOA (0.25 M), and 2 mL DMF/H ₂ O (1.86/1)	42	_	2
[{Ni ₄ (OH) ₃ AsO ₄ } ₄ (<i>B-α-</i> PW ₉ O ₃₄) ₄] ²⁸⁻	LED light (20 mW, 455 nm), [Ir(ppy) ₂ (dtbbpy)] ⁺ (0.2 mM), TEOA (0.25 M), H ₂ O (1.4 M), and 2 mL CH ₃ CN/DMF (1/3)	360	_	3
[Ni(H ₂ O)PW ₁₁ O ₃₉] ⁵⁻	High power LED ($\lambda = 470$ nm),	10.8	0.0097 s ⁻¹	
[Ni(H ₂ O)SiW ₁₁ O ₃₉] ⁶⁻	1.0 mM [Ru(bpy) ₃]Cl ₂ , 0.12 M	inactive	_	4
[Ni(H ₂ O)GeW ₁₁ O ₃₉] ⁶⁻	ascorbate buffer, pH 4	36.8	0.009 s ⁻¹	
$[{Ni_4(OH)_3(PO_4)}_4(A-PW_9O_{34})_4]^{28-}$	100 W white LED light, 0.2	578.8	100.5 h ⁻¹	
$[\{Ni_4(OH)_3(PO_4)\}_4(A-PW_9O_{34})_2(B-PW_9O_{34})_2]^{28-}$	mM [Ir(ppy) ₂ (dtbbpy)][PF ₆], 2 mL TEOA, 11 mL CH ₃ CN, 33	679.1	112.7 h ⁻¹	5
$[{Ni_4(OH)_3(VO_4)}_4(B-PW_9O_{34})_4]^{28-}$	mL DMF, and 4 mL H ₂ O	931.1	185.5 h ⁻¹	
[Cu ₄ (H ₂ O) ₂ (<i>B</i> - <i>α</i> -PW ₉ O ₃₄) ₂] ¹⁰⁻	LED light (20 mW, 455 nm), 0.2 mM $[Ir(ppy)_2(dtbbpy)]^+$, TEOA (0.25 M), H ₂ O (1.4 M), and 2 mL CH ₃ CN/DMF (1/3)	1270	_	6
[Ni ₃ (OH) ₃ (H ₂ O) ₃ P ₂ W ₁₅ O ₅₉] ⁹⁻	LED light (20 mW, 455 nm),	161	-	
$[Ni_{14}(OH)_6(H_2O)_{10}(HPO_4)_4- (P_2W_{15}O_{56})_4]^{34-}$	0.2 mM [Ir(ppy) ₂ (dtbbpy)] ⁺ , TEOA (0.25 M), and 2 mL	260	_	7
$[Ni_2(P_2W_{15}O_{56})_2]^{20-}$	CH ₃ CN/DMF/H ₂ O	1	_	
[Cu ^{II} ₁₄ Te ^{IV} ₁₀ O ₂₈ (<i>B-a</i> -SiW ₉ O ₃₄) ₄] ^{28–}	Xe light (100 W, 420 nm cut off), $[Ir(ppy)_2(dtbbpy)]^+$ (0.2 mM), 1 mL TEOA, 5.5 mL CH ₃ CN, 16.5 mL DMF, and 2 mL H ₂ O	343.6	116.7 h ⁻¹	8

 Table S2. Visible light-driven HER catalyzed by different POM-based photocatalysts.

Solubility experiments $[Ir(ppy)_2(dtbbpy)][PF_6].$ of Firstly, 0.5 mg $[Ir(ppy)_2(dtbbpy)][PF_6]$ was put into a 50 mL beaker with 10 mL distilled water. Then, the beaker was sonicated for 20 minutes. As shown in Fig. S2a, $[Ir(ppy)_2(dtbbpy)][PF_6]$ is quite hard to be dissolved in water and it is just dispersed in water. When the water being poured out the beaker, the undissolved yellow $[Ir(ppy)_2(dtbbpy)][PF_6]$ can be obviously seen on the inside of the beaker (Fig. S2b). Secondly, 0.5 mg [Ir(ppy)₂(dtbbpy)][PF₆] was put into 1 mL CH₃CN/DMF/H₂O (volume ratio, 33/11/4) mixed solution, [Ir(ppy)₂(dtbbpy)][PF₆] is dissolved immediately and a clear yellow solution was formed (Fig. S2c).

Fig. S2 Solubility experiments of $[Ir(ppy)_2(dtbbpy)][PF_6]$ in different solvents. (a) $[Ir(ppy)_2(dtbbpy)][PF_6]$ was almost insoluble in water. (b) $[Ir(ppy)_2(dtbbpy)][PF_6]$ is on the inside of the beaker after pouring out water. (c) $[Ir(ppy)_2(dtbbpy)][PF_6]$ was dissolved in 1 mL CH₃CN/DMF/H₂O (volume ratio, 33/11/4) mixed solution.

Fig. S3 TON *vs.* different concentrations of 1. Conditions: 100 W white LED light, catalyst concentrations (2–20 μ M) in a 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM) after 6 hours of visible-light irradiation, vigorous stirring (1.0×10³ rpm).

Fig. S4 TON *vs.* different concentrations of 2. Conditions: 100 W white LED light, catalyst concentrations (2–20 μ M) in a 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM) after 6 hours of visible-light irradiation, vigorous stirring (1.0×10³ rpm).

Fig. S5 TOF *vs.* different concentrations of **1**. Conditions: 100 W white LED light, catalyst concentrations (2–20 μ M) in a 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM) after 6 hours of visible-light irradiation, vigorous stirring (1.0×10³ rpm).

Fig. S6 TOF *vs.* different concentrations of **2**. Conditions: 100 W white LED light, catalyst concentrations (2–20 μ M) in a 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM) after 6 hours of visible-light irradiation, vigorous stirring (1.0×10³ rpm).

Quantum yield calculation:

$$\Phi_{QY} = 2 \times \frac{n(evolved H_2)}{n(incident \ photons)} \times 100\%$$

Initial radius = 0.5 cm = 0.005 m

$$A_R = \pi R^2 = \pi \times (0.005m)^2 = 7.854 \times 10^{-5}m^2$$

 $P = E \cdot A_R$

$$n(incident \ photons) = \frac{Pt\lambda}{hcN_A} = 3.23 \times 10^{-3} \ mol$$

where P is the illumination power (W), *t* is the illumination time (s, in our cases t = 21600s), A_R is the irradiation area, *h* is the Planck constant, *c* is the velocity of light and N_A is Avogadro's number.

For compound 1:

H₂ formation rate = 7.30×10^{-9} mol/s

$$\Phi_{QY} = 2 \times \frac{7.30 \times 10^{-9} \times 3600 \times 6}{3.23 \times 10^{-3}} \times 100\% = 9.8\%$$

For compound **2**:

 H_2 formation rate = 6.09×10⁻⁹ mol/s

$$\Phi_{QY} = 2 \times \frac{6.09 \times 10^{-9} \times 3600 \times 6}{3.23 \times 10^{-3}} \times 100\% = 8.2\%$$

For compound **3**:

H₂ formation rate = 4.03×10^{-9} mol/s

$$\Phi_{QY} = 2 \times \frac{4.03 \times 10^{-9} \times 3600 \times 6}{3.23 \times 10^{-3}} \times 100\% = 5.4\%$$

The high quantum yield of 9.6% for 1, 8.2% for 2, and 5.4% for 3 is achieved at a catalyst concentration of 20 μ M (Table S2), respectively, which is comparable to many other visible-light-driven HER systems.^{8–15}

Table	S3 .	Quantum	yield	of	visible	light-driven	HER	catalyzed	by	different
photoc	ataly	sts.								

	Representative reaction	Quantum	D f	
Catalysts	conditions	yield	Ref.	
1	100 W white LED light, 20 µM catalysts,	9.8%		
2	0.2 mM $[Ir(ppy)_2(dtbbpy)][PF_6]$, 2 mL	8.2%	This	
3	TEOA, 11 mL CH ₃ CN, 33 mL DMF, and $4 \text{ mL H}_{2}O$	5.4%	work	
[(CF ₃ PY ₅ Me ₂)Co(H ₂ O)](CF ₃ SO ₃) ₂	150 W Xe lamp (455 nm long-pass filter), 50 μ M catalyst, 0.2 mM [Ru(bpy) ₃]Cl ₂ and 0.1 M ascorbic acid in 1.0 M phosphate buffer (pH 7)	0.23%	9	
[Ni ^{II} ₄ (H ₂ O) ₂ (TiW ₉ O ₃₄) ₂] ^{12–}	300 W Xe light (λ = 532 nm), 5 mL 6% TEA aqueous solution, 4 mM fluorescein, deaerated with N ₂ .	0.52%	10	
[Co(bpyPY ₂ Me)(CH ₃ CN)(CF ₃ SO ₃)](CF ₃ SO ₃)	Blue LED light (452 \pm 10 nm), 40 μ M catalyst, 0.33 mM [Ru(bpy) ₃] ²⁺ and 0.5 M H ₂ A/HA ⁻ at pH 4	$7.5 \pm 0.8\%$	11	
$(Et_4N)Ni(X-pyS)_3 (X = 5-H)$	LED (520 nm, 13 mW/cm ²), catalysts	$4.5 \pm 0.7\%$		
$(Et_4N)Ni(X-pyS)_3 (X = 6-CH_3)$	 (4.0 μM), fluorescein (2.0 mM), and TEA (0.36 M) in EtOH/H₂O (1/1), pH 11.6, 15 °C. 	6.0 ± 0.8%	12	
[SiW ₁₁ O ₃₉] ⁸⁻	Hg lamp (400 W) with a cutoff filter ($\lambda >$ 420 nm), [SiW ₁₁ O ₃₉] ⁸⁻ (32 mM), EY (0.31 mM), 1.0 wt% Pt, pH 7.0.	11.4%	13	
Ni-ME complex	300 W Xe lamp with a bandpass filter (centered at 460 nm), Ni(OAc) ₂ (3 mM), 2-mercaptoethanol (30 mM), Erythrosine B (2.25 mM) in a 100 mL of aqueous solution containing 15 vol% of TEOA (pH 8.5).	24.5%	14	
RuP-NiP system	RuP (0.3 μ mol) and NiP (0.1 μ mol) in AA (0.1 M, pH 4.5) was measured using an LED light source (λ 460 nm, 5 mW cm ⁻²).	10%	15	

Fig. S7 Comparison of visible light-driven HER activity of different concentrations of $[A-\alpha-\text{SiW}_9\text{O}_{34}]^{10-}$ and 20 μ M of **1**. Conditions: 100 W white LED light, 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with $[\text{Ir}(\text{ppy})_2(\text{dtbbpy})][\text{PF}_6]$ (0.2 mM), vigorous stirring (1.0×10³ rpm).

3. Quenching Mechanism Studies

Fig. S8 Emission spectra of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (0.2 mM) with different concentrations of 2 (0–40 μ M).

Fig. S9 Stern-Volmer plots for emission spectra of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (0.2 mM) with different concentrations of **1** (0–40 μ M).

Fig. S10 Stern-Volmer plots for emission spectra of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (0.2 mM) with different concentrations of 2 (0–40 μ M).

Fig. S11 Stern-Volmer plots for emission spectra of $[Ir(ppy)_2(dtbbpy)][PF_6]$ (0.2 mM) with different concentrations of TEOA (0–0.3 M).

Fig. S12 Time-resolved fluorescence spectra of $[Ir(ppy)_2(dtbbpy)]^+$ dye only (black curve), $[Ir(ppy)_2(dtbbpy)]^+$ dye with **1** (red curve), $[Ir(ppy)_2(dtbbpy)]^+$ dye with **2** (blue curve) and $[Ir(ppy)_2(dtbbpy)]^+$ dye with TEOA (pink curve). Conditions: 400 nm excitation, 0.2 mM $[Ir(ppy)_2(dtbbpy)]^+$, 50 μ M catalysts, 0.25 M TEOA and CH₃CN/DMF/H₂O (volume ratio: 11/33/4).

Sample	Lifetime (ns)
[Ir(ppy) ₂ (dtbbpy)] ⁺ dye only	114.3 ± 0.5
$[Ir(ppy)_2(dtbbpy)]^+ dye + 1$	107.9 ± 0.3
$[Ir(ppy)_2(dtbbpy)]^+ dye + 2$	104.7 ± 0.3
[Ir(ppy) ₂ (dtbbpy)] ⁺ dye + TEOA	47.3 ± 1.0

Table S4. Comparison of lifetimes of excited state [Ir(ppy)₂(dtbbpy)]⁺ dye.

Scheme S1. Proposed mechanism for the visible-light-driven HER system catalyzed by 1 with oxidative and reductive quenching mechanism, $PS = [Ir(ppy)_2(dtbbpy)]^+$.

4. Stability Studies

			Size (d.nm):	% Intensity:	St Dev (d.nm):
Z-Average (d.nm):	0.01501	Peak 1:	0.000	0.0	0.000
Pdl:	0.043	Peak 2:	0.000	0.0	0.000
Intercept:	0.376	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality	report			
		Size Distrib	oution by Intensity		
			Record 33: 1 1		

Fig. S13 DLS measurement of 1 (20 μ M) solution after 6 hours of visible-light irradiation. Conditions: 100 W white LED light, 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), vigorous stirring (1.0×10³ rpm).

Fig. S14 DLS measurement of Cu(NO₃)₂ (10 μ M) solution after 6 hours of visiblelight irradiation. Conditions: 100 W white LED light, 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), vigorous stirring (1.0×10³ rpm).

Fig. S15 DLS measurement of Cu(NO₃)₂ (20 μ M) solution after 6 hours of visiblelight irradiation. Conditions: 100 W white LED light, 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), vigorous stirring (1.0×10³ rpm).

Fig. S16 Visible light-driven HER activity of **1** after being aged for 12 hours and 24 hours. Conditions: 100 W white LED light, catalyst (20 μ M) in a 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O) with [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), vigorous stirring (1.0×10³ rpm).

Fig. S17 FT-IR spectra of pristine 1 and recovered 1 after photocatalytic HER.

Fig. S18 Time-dependent UV-Vis spectra of 1 $(1.0 \times 10^{-4} \text{ M})$ in the DMF/CH₃CN/TEOA/H₂O solution (volume ratio, 33/11/2/4).

Fig. S19 Visible light-driven HER using 20 μ M of 1 with 150 mg Hg and 20 μ M of 1 with aged for 24h with 150 mg Hg. Conditions: 100 W white LED light, 20 μ M of 1 with 150 mg Hg, [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O), vigorous stirring (1.0×10³ rpm).

As can be seen in Table S5, the concentration of Cu is 0.36 μ M after extraction. There are five Cu atoms in each molecular **1**. The total concentration of Cu is 100 μ M as 20 μ M of **1** was used for photocatalytic HER. As a result, catalyst extraction and ICP-MS analysis indicated that less than < 0.36% of **1** might have decomposed to other Cu species in the photocatalytic HER process.

Reaction time (h)	Concentration of 1 (µM)	Elements	Cu, W after extraction (µM)
6	20	Cu	0.36
0		W	0.69

 Table S5. ICP-MS for compound 1 after 6 hours of visible-light irradiation.

Conditions: 100 W white LED light, compound 1 (20 μ M), [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF, and 4 mL H₂O), vigorous stirring (1.0 × 10³ rpm).

Figure S20. Kinetics of visible light-driven HER with 20 μ M of 1, 100 μ M of Cu(NO₃)₂, and 1 μ M of Cu(NO₃)₂. Conditions: 100 W white LED light, 50 mL solution (2 mL TEOA, 11 mL CH₃CN, 33 mL DMF and 4 mL H₂O), [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), 6 hours of visible-light irradiation, vigorous stirring (1.0×10³ rpm).

5. Supplementary Physical Characterizations

Fig. S22 FT-IR spectrum for compound 2.

6. References

(1) Z. Y. Zhang, Q. P. Lin, S.-T. Zheng, X. H. Bu, P. Y. Feng, Chem. Commun., 2011, 47, 3918–3920.

(2) H. J. Lv, J. Song, H. M. Zhu, Y. V. Geletii, J. Bacsa, C. C. Zhao, T. Q. Lian, D. G. Musaev, C.
L. Hill, J. Catal., 2013, 307, 48–54.

- (3) H. J. Lv, Y. N. Chi, J. V. Leusen, P. Kögerler, Z. Y. Chen, J. Bacsa, Y. V. Geletti, W. W. Guo,
 T. Q. Lian, C. L. Hill, *Chem. Eur. J.*, 2015, 21, 17363–17370.
- (4) K. V. Allmen, R. Moré, R. Müller, J. Soriano-López, A. Linden, G. R. Patzke, *ChemPlusChem*, **2015**, 80, 1389–1398.
- (5) X.-B. Han, C. Qin, X.-L. Wang, Y.-Z. Tan, X.-J. Zhao, E.-B. Wang, *Appl. Catal. B-Environ*.
 2017, 211, 349–356.
- (6) H. Lv, Y. Gao, W. Guo, S. M. Lauinger, Y. Chi, J. Bacsa, K. P. Sullivan, M. Wieliczko, D. G.
 Musaev, C. L. Hill, *Inorg. Chem.*, 2016, 55, 6750–6758.
- (7) W. Guo, H. Lv, J. Bacsa, Y. Gao, J. S. Lee and C. L. Hill, Inorg. Chem., 2016, 55, 461–466.
- (8) W.-C. Chen, S.-T. Wu, C. Qin, X.-L. Wang, K.-Z. Shao, Z.-M. Su, E.-B. Wang, *Dalton Trans.*, 2018, 47, 16403–16407.
- (9) Y. Sun, J. Sun, J. R. Long, P. Yang and C. J. Chang, Chem. Sci., 2013, 4, 118–124.
- (10) G.-H. Zhang, W.-B. Yang, W.-M. Wu, X.-Y. Wu, L. Zhang, X.-F. Kuang, S.-S. Wang, C.-Z.
 Lu, J. Catal., 2019, 369, 54–59.
- (11) R. S. Khnayzer, V. S. Thoi, M. Nippe, A. E. King, J. W. Jurss, K. A. El Roz, J. R. Long, C. J. Chang and F. N. Castellano, *Energy Environ. Sci.*, 2014, 7, 1477–1488.
- (12) Z. Han, L. Shen, W. W. Brennessel, P. L. Holland, and R. Eisenberg, *J. Am. Chem. Soc.* 2013, 135, 14659–14669.
- (13) X. Liu, Y. Li, S. Peng, G. Lu, S. Li, Int. J. Hydrogen Energy, 2013, 38, 11709-11719.
- (14) W. Zhang, J. Hong, J. Zheng, Z. Huang, J. S. Zhou, and R. Xu, *J. Am. Chem. Soc.* 2011, 133, 20680–20683.
- (15) M. A. Gross, A. Reynal, J. R. Durrant, and E. Reisner, J. Am. Chem. Soc. 2014, 136, 356-366.