Supporting Information

Synthesis of a dinuclear europium (III) complex through

deprotonation and oxygen-atom transfer of trimethylamine N-oxide

Yangjuan Li,^{a, b} Xiuting Chen ^a and Yu Gong ^{*a}

^a Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of

Sciences, Shanghai, 201800, China.

^b School of Nuclear Science and Technology, University of Chinese Academy of Sciences,

Beijing, 100049, China.

*E-mail: gongyu@sinap.ac.cn

Contents

I. Experimental Procedures

II. Characterization

Fig. S1. ¹H NMR spectrum of 1 at 295.6 K in C_6D_6 .

Fig. S2. ¹³C NMR spectrum of 1 at 297.3 K in C_6D_6 .

Fig. S3. ¹H NMR spectrum of 1 at 297.4 K in C_7D_8 .

Fig. S4. ¹H NMR spectrum of 1 at 246.0 K in C_7D_8 .

Fig. S5. ¹H NMR spectrum of 2 at 303.1 K in C_6D_6 .

Fig. S6. ¹³C NMR spectrum of 2 at 303.2 K in C_6D_6 .

Fig. S7. ³¹P NMR spectrum of 2 at 301.1 K in C_6D_6 .

Fig. S8. Variable-temperature SQUID magnetic data for 1.

Fig. S9. Eu L₃-edge XANES spectra of 1, 2, EuCl₃ and Eu[N(SiMe₃)₂]₃.

 Table S1. Crystal data and structure refinements for complexes 1 and 2.

III. References

I. Experimental Procedures

General information

All reactions were carried out using modified Schlenk-line and Ar-atmosphere glove box (<1 ppm O₂/H₂O) techniques. Solvents were dried and degassed through a Vigor solvent purification system and stored over 4Å sieves for 24h before use. C₆D₆ and C₇D₈ were dried over Na and stored under argon atmosphere prior to use. All NMR spectra were recorded on Bruker ADVANCE-500 or AV Neo 600 spectrometers. ¹H and ¹³C NMR chemical shifts (δ) are reported in ppm and were calibrated to residual solvent peaks, and ³¹P NMR chemical shifts are relative to 85% H₃PO₄. Elemental analyses (C, H, N) were performed on a Vario EL III elemental analyser. The X-ray absorption near edge structure (XANES) spectra at the Eu L₃-edge (6977 eV) were collected at room temperature in fluorescence mode using a Lytle detector at the beamline BL14W1 of the Shanghai Synchrotron Radiation Facility (SSRF), China.¹ The powder samples were placed in the center of the polyfluortetraethylene sample holder (path length: 0.1 cm), and sealed by Kapton tape in an argon glove box. The station was operated with a Si(111) double crystal monochromator. The electron storage ring of SSRF was operated at 3.5 GeV and a current in the range of 150-210 mA. Fe metal foil with the first inflection point of Fe K-edge (7112 eV) was used to calibrate photon energy. The treatment of XANES spectra was performed using ATHENA interfaces to IFEFFIT 7.0 software.² Magnetization measurements of the powder samples were carried out using a Quantum Design SQUID magnetometer (type *MPMS3) in the temperature range of 1.9-300 K at a magnetic field of 0.1T. Corrections for diamagnetism of the constituting atoms were applied using Pascal's constants.3 The effective magnetic moments were calculated from the expression $\mu_{eff} = 2.83 \sqrt{\chi_m^{corr} T(B.M.)}_4$ Eu[N(SiMe₃)₂]₃ was synthesized according to literature methods.⁵

Me₃NO and Me₃PO were used as purchased.

X-ray Crystallography

The intensity data of **1** were collected on Bruker D8 Venture (Mo K α) at 193 K, and the intensity data of **2** were collected on Rigaku Synergy R (Cu K α) at 180 K. Absorption corrections were applied by using the program CrysAlisPro (multi-scan). The crystal structures were solved by SHELXT, and nonhydrogen atoms were refined anisotropically by least-squares techniques on F^2 by SHELXL with the graphical user interfaces of OLEX2.⁶ For all structures, H-atom parameters were constrained.

Synthesis of Eu₂(OCH₂NMe₂)₂[N(SiMe₃)₂]₄ (1)

Me₃NO (39.8 mg, 0.5 mmol) was added to a solution of Eu[N(SiMe₃)₂]₃ (326.1 mg, 0.5 mmol) in n-hexane (20 mL) at room temperature. The mixture was stirred for 1 h, and the color of the mixture changed to orange-yellow. After filtration, the volatile solvent in the filtrate was removed under reduced pressure. The resulting orange-yellow solid was washed by n-hexane three times and dried in vacuum. Yield: 110 mg, 39%. Anal. Calcd (%) for C₃₀H₈₈Eu₂N₆O₂Si₈: C, 32.95; H, 8.11; N, 7.68. Found: C, 34.26; H, 8.82; N, 7.99. The consistently high carbon content is presumably due to the high sensitivity of this compound toward moisture. ¹H NMR (C₆D₆, 500.1MHz, 295.6 K): δ 24.73 (s, 6H, OCH₂NMe₂), -0.02 (s, 36H, N(SiMe₃)₂). Signals corresponding to the OCH₂NMe₃ protons were not located between +600 and -600 ppm. ¹H NMR (C₇D₈, 600.1MHz, 297.4 K): δ 24.79 (s, 6H, OCH₂NMe₂), -0.07 (s, 36H, N(SiMe₃)₂). ¹H NMR (C₇D₈, 600.1MHz, 246.0 K): δ 34.34 (s, 6H, OCH₂NMe₂),-0.50 (s, 36H, N(SiMe₃)₂). ¹³C NMR (C₆D₆, 125.8MHz, 297.3 K): δ 12.07 (OCH₂NMe₂), 1.43 (N(SiMe₃)₂), -14.89 (OCH₂NMe₂).

Synthesis of Eu[N(SiMe₃)₂]₃(OPMe₃) (2)

The procedure for the synthesis of **2** is similar to that for the synthesis of **1**. Me₃PO (47.1 mg, 0.5 mmol) and Eu[N(SiMe₃)₂]₃ (321.2 mg, 0.5 mmol) gave the orange-yellow powders of **2**. Yield: 151 mg, 41%. Anal. Calcd (%) for $C_{30}H_{88}Eu_2N_6O_2Si_8$: C, 34.78; H, 8.76; N, 5.79. Found: C, 35.13; H,8.85; N, 5.38. ¹H NMR (C₆D₆, 600.1MHz, 303.1 K): δ 22.92 (s, 9H, OP*Me*₃), -0.59 (s, 54H, N(Si*Me*₃)₂)ppm. ¹³C NMR (C₆D₆, 150.9MHz, 303.2 K): δ 53.45 (OP*Me*₃), -0.95 (N(Si*Me*₃)₂). ³¹P NMR (C₆D₆, 242.9 MHz, 301.1 K): δ 78.51ppm.

II. Characterization

Fig. S1. ¹H NMR spectrum of **1** at 295.6 K in C_6D_6 . The resonance at 0.07 is assignable to the hydrolysis product of **1**. The resonances of OC*H*₂NMe₃ protons were not observed in this spectrum.

Fig. S2. ¹³C NMR spectrum of 1 at 297.3 K in C_6D_6 . The resonance at 2.59 ppm is assignable to the hydrolysis product of 1.

Fig. S3. ¹H NMR spectrum of 1 at 297.4 K in C_7D_8 . The resonance at 0.07 ppm is assignable to the hydrolysis product of 1.

Fig. S4. ¹H NMR spectrum of 1 at 246.0 K in C_7D_8 . The resonance at 0.08 ppm is assignable to the hydrolysis product of 1.

Fig. S5. ¹H NMR spectrum of **2** at 303.1 K in C_6D_6 . The resonance at 0.06 ppm is assignable to the hydrolysis product of **2**. The resonances at 0.87 and 1.24ppm are assignable to n-hexane.

Fig. S6. ¹³C NMR spectrum of **2** at 303.2 K in C_6D_6 . The resonance at 2.60 ppm is assignable to the hydrolysis product of **2**. The resonances at 14.29, 23.00 and 31.92ppm are assigned to n-hexane.

Fig. S7. ³¹P NMR spectrum of 2 at 301.1 K in C_6D_6 .

Fig. S8. Variable-temperature SQUID magnetic data for 1: (a) χ vs. T; (b) χ T vs. T; (c) μ_{eff} vs. T; (d) χ^{-1} vs. T

Fig. S9. Eu L₃-edge XANES spectra of 1, 2, EuCl₃ and Eu[N(SiMe₃)₂]₃

Table S1. Crystal data and structure refinements for complexes 1 and 2

Complex	1	2
CCDC	1944303	1944305
Empirical formula	$C_{30}H_{88}Eu_{2}N_{6}O_{2}Si_{8}$	C21H63EuN3OPSi6
Formula weight	1093.7	241.74
Temperature/K	193(2)	180.00(10)
Crystal system	monoclinic	trigonal
Space group	$P2_1/n$	P-3

a /Å	12.1744(6)	14.69510(10)
b/Å	10.2370(5)	14.69510(10)
c/Å	20.9872(12)	11.27440(10)
$\alpha/^{\circ}$	90	90
β/°	91.058(2)	90
γ/°	90	120
Volume/Å ³	2615.2(2)	2108.48(3)
Z	2	6
$\rho_{calc}g/cm^3$	1.389	1.142
µ/mm ⁻¹	2.59	12.753
F(000)	1128	760
θ range/deg	5.528 to 51.986	10.482 to 133.052
	$-14 \le h \le 15$	$-17 \le h \le 13$
Index ranges	$-12 \le k \le 12$	$-15 \le k \le 17$
	$-25 \le l \le 25$	$-10 \le l \le 13$
Reflections collected	25544	12326
	5130	2469
Independent reflections	$R_{int} = 0.0404$	$R_{int} = 0.0273$
	$R_{sigma} = 0.0297$	$R_{sigma} = 0.0189$
Completeness	100%	100%
Data/restraints/parameters	5130/0/240	2469/0/107
Goodness-of-fit on F ²	1.079	1.063
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0197$	$R_1 = 0.0307$
	$wR_2 = 0.0445$	$wR_2 = 0.0790$
Final R indexes [all data]	$R_1 = 0.0234$	$R_1 = 0.0353$
	$wR_2 = 0.0465$	$wR_2 = 0.0806$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.56	0.40/-0.76

III. References

- H. S. Yu, X. J. Wei, J. Li, S. Q. Gu, S. Zhang, L. H. Wang, J. Y. Ma, L. N. Li, Q. Gao, R. Si, F. F. Sun, Y. Wang, F. Song, H. J. Xu, X. H. Yu, Y. Zou, J. Q. Wang, Z. Jiang and Y. Y. Huang, *Nucl.Sci.Technol.*, 2015, 26, No. 050102.
- 2. (a)M. Newville, J. Synchrotron Radiat., 2001, **8**, 96; (b)B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, **12**, 537.
- 3. G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.
- 4. I. Pospieszna-Markiewicz, W. Radecka-Paryzek, M. Kubicki, M. Korabik and Z. Hnatejko, *Polyhedron*, 2015, **97**, 167.
- 5. D. C. Bradley, Ghotra, J. S., Hart, F. A., J. Chem. Soc., Dalton Trans., 1973, 1021.
- (a)O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339; (b)G. Sheldrick, *Acta Crystallogr. Section A*, 2015, 71, 3; (c)G. M. Sheldrick, *Acta Crystallogr. Section C*, 2015, 71, 3.