SUPPORTING INFORMATION

Methanol-assisted synthesis of Ni³⁺-doped ultrathin NiZn-LDH

nanomeshes for boosted alkaline water splitting

Yingbo Gong ^a, Jianfeng Huang ^{*a}, Liyun Cao ^a, Koji Kajiyoshi ^b, Dan Yang ^a, Yongqiang Feng ^a,

Lingjiang Kou^a and Liangliang Feng*ab

^a School of Materials Science & Engineering, Xi'an Key Laboratory of Green Processing for Ceramic materials,

Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi

University of Science and Technology, Xi'an Shaanxi 710021, P.R. China.

^b Research Laboratory of Hydrothermal Chemistry, Faculty of Science and Technology, Kochi University,

Kochi, 780-8520, Japan.

E-mail: huangjf@sust.edu.cn; fengll@sust.edu.cn

Electrochemical active surface area (ECSA) calculation:

The ECSA of the electrode is estimated from the double-layer capacitance (C_{dl}) of the catalyst according to the following equation:¹⁻⁴

$$ECSA = C_{dl} / Cs$$
 (1)

Where, C_s is the specific capacitance of a flat standard electrode. In this work, we give C_s a value of 40 μ F cm⁻².

The C_{dl} can be calculated by linearly fitting at 0.1 V vs scan rate. The C_{dl} can be calculated according to the following equation:

$$C_{dI} = j / v$$
 (2)

Where, j is the difference of the anodic and cathodic current densities with no-Faradaic and v is the different scan rate

Take the OER performance of Ni(II, III)Zn-LDH/NF-nm as an example (Slope = 34.7 mF cm⁻² i.e. C_{dI} = 4.164 mF)

ECSA = C_{dl} / Cs = 4.164 / 0.04 = 52.05 cm⁻²

Figure S.1 Schematic diagram of the crystalline structure of Ni(II)-based LDH.

Figure S.2 AFM image and the height profile of Ni(II, III)Zn-LDH/NF-nm.

Figure S.3 XRD patterns of NiZn-LDH-p.

Figure S.4 SAED patterns of the NiZn-LDH-p (A) and the Ni(II, III)Zn-LDH/NF-nm (B).

Figure S.5 Raman spectra of Ni(II, III)Zn-LDH/NF-nm and NiZn-LDH-p.

Figure S.6 SEM images of the NiZn-LDH/NF-ns.

Figure S.7 HRTEM pattern of the NiZn-LDH/NF-ns (A, C) and Ni(II, III)Zn-LDH/NF-nm (B, D).

Figure S.8 SEM images (A-C) and TEM images (D-F) of the Ni(II, III)Zn-LDH/NF-nm samples

prepared at the reaction times of 5 h, 13 h and 21 h, respectively.

Figure S.9 Zn 2p XPS spectra of Ni(II, III)Zn-LDH/NF-nm and NiZn-LDH/NF-ns.

Figure S.10 (A) Cyclic voltammetry (CV) curves of the Ni(II, III)Zn-LDH/NF-nm and the NiZn-LDH/NF-ns; The normalized LSV curves of the OER (B); (C) Comparative CV curves before and after 2000 cycles; (D) Long-term electrochemical OER durability test for the Ni(II, III)Zn-LDH/NF-

nm.

Figure S.11 (A) The volume of the oxygen-produced gas from the OER of Ni (II, III) Zn-LDH / NFnm was recorded every 20 minutes; (B) The oxygen generation efficiency of Ni (II, III) Zn-LDH / NF-nm OER when current density is maintained at 50 mA cm⁻².

In order to make the quantitative analysis of the OER or HER during the experiments, we built a device for measuring the evolved gas amount, as shown in Figure S.12. Taking the OER as an example, firstly, we collected O_2 gas by water drainage method after the OER have been initiated for ~40 min when the soluble O_2 gas is saturated in water. Then, we calculated the moles of O_2 generated from OER with an ideal gas law and the theoretical amount of O_2 evolved by using the Faraday law, respectively. Note that the passage of 96485.4 C charge causes 1 equivalent of reaction. Furthermore, the Faradic efficiency of the as-prepared catalysts for the OER or HER can be determined by the ratio of the actually evolved O_2 or H_2 amount, respectively, during the electrocatalysis to the theoretically evolved O_2 or H_2 amount.

Figure S.13 (A) SEM and (B,C) TEM images of the Ni(II, III)Zn-LDH/NF-nm after OER test; (D-G): elemental mapping analysis images; Insert in (B): SAED pattern of Ni(II, III)Zn-LDH/NF-nm after OER test.

Figure S.14 (C) XPS survey spectra and (D) Zn 2p spectra of Ni(II, III)Zn-LDH/NF-nm before and after OER test.

Figure S.15 (A) Overpotential of HER comparison of various catalysts at 100 mA cm⁻²; The normalized LSV curves of the HER (B); (C) HER Nyquist plots of catalysts (inset shows the equivalent circuit used); Long-term electrochemical HER durability test for the Ni(II, III)Zn-LDH/NF-nm.

Figure S.16 (A) The volume of the hydrogen-produced gas from the HER of Ni (II, III) Zn-LDH / NFnm was recorded every 20 minutes; (B) Hydrogen production efficiency for HER under when the i-t measurements were performed at 22 mA cm⁻².

Figure S.17 SEM (A) and TEM images (B,C)of Ni(II, III)Zn-LDH/NF-nm after HER. (D-G) Elemental mapping images of Ni(II, III)Zn-LDH/NF-nm after HER. Insert in (B): SAED pattern of Ni(II, III)Zn-LDH/NF-nm after HER.

Figure S.18 XPS spectra of Ni(II, III)Zn-LDH/NF-nm and Ni(II, III)Zn-LDH/NF-nm after HER. (A) survey spectra. (B) Ni 2p. (C) Zn 2p. (D) O 1s.

Table S.1	Comparison	of the c	harge	transfer	resistance	(Rt)	and	internal	resistance	(Rs)	of Ni(II,
III)Zn-LDH	I/NF-nm and	NiZn-LDI	H/NF-r	ıs.							

Nyquist plots of OER	Ni(II, III)Zn-LDH/NF-nm	NiZn-LDH/NF-ns
Rs	2.74	2.94
Rct	1.13	7.73

Table S.2 Comparison of the electrochemically active surface area (ECSA) of OER for Ni(II, III)Zn-LDH/NF-nm and NiZn-LDH/NF-ns.

Results of analysis	Ni(II, III)Zn-LDH/NF-nm	NiZn-LDH/NF-ns
ECSA	52.05 cm ⁻²	31.95 cm ⁻²

Table S.3 Comparison of the charge transfer resistance (Rt) and internal resistance (Rs) of Ni(II,III)Zn-LDH/NF-nm and NiZn-LDH/NF-ns.

Nyquist plots of HER	Ni(II, III)Zn-LDH/NF-nm	NiZn-LDH/NF-ns
Rs	3.49	3.96
Rct	13.13	17.14

Table S.4 Comparison of the electrochemically active surface area (ECSA) of HER for Ni(II, III)Zn-LDH/NF-nm and NiZn-LDH/NF-ns.

Results of analysis	Ni(II, III)Zn-LDH/NF-nm	NiZn-LDH/NF-ns
ECSA	15.75 cm ⁻²	7.80 cm ⁻²

Catalyst	Overpotential (mV, at 10 mA cm ⁻²)	Overpotential (mV, at 100 mA cm ⁻²)	mass loading (mg cm ⁻²)	Reference
Ni(II, III)Zn-LDH/NF-nm	≈150	=320	0.107	This work
oxygen-doped NiFe-LDH	-	≈370	0.28	ACS Sustainable Chem. Eng. 2019, 7, 4247–4254
Ni _{0.83} Fe _{0.17} (OH) ₂	=245	-	0.204	ACS Catal. 8, 2018, 5382-5390
NiV-LDH/NF	-	=391	0.71	Nanoscale, 2019, 11, 8855-8863
1.0 h-Ni(OH) ₂	-	≈400	0.687	Green Chem., 2019, 21, 578-588
ES-CoAl-LDH	=270	=320	5	Dalton Trans., 2019, 48, 5214-5221
Co ₄ Fe ₂ -LDHs/Co(OH) ₂ - NWs	=220	=231	-	Chem. Commun., 2019, 55, 4218-4221
ZnNiNGr	=290	-	-	ACS Appl. Energy Mater, 2018, 1, 5500-5510
Ni ₃ V ₁ Fe ₁ LDH	=269	≈410	0.28	Inorg. Chem. Front., 2019, 6, 1890
β-Ni(OH)₂ nanomeshes	-	≈360	0.285	Adv. Mater. 2017 29, 1604765.
NiCo-Fe1.0	=283	≈350	0.283	ChemSusChem, 2019, 10.1002/cssc.201901364
holey Ni(OH)₂	=335	≈370	0.204	small 2017, 13, 1700334
Ni _{0.75} Fe _{0.125} V _{0.125} -LDHs/NF	=231	≈270	1.42	Small, 2018, 14, 4724
water-plasma exfoliated CoFe LDH/NF	=232	≈360	0.408	Adv. Mater. 2017, 29, 1701546
ơ-FeOOH NSs/NF	=265	≈470	0.16	Adv. Mater. 2018, 1803144
NiFe(II,III)-LDH	=220	=307	2	Small 2019, 1902551
NiFeRu-LDH	=225	≈250	-	Adv. Mater. 2018, 30 , 1706279
NiLa-LDH NSAs	=209	≈321	-	Journal of Energy Chemistry, 2019, 33, 125-129
CoFe ₂ O ₄ NSs	=275	-	0.36	J. Mater. Chem. A, 2019, 7, 7328-7332
oxygen-enriched NiFe-	=310	≈370	0.204	Adv. Mater., 2017, 29,

Table S.5 Comparison of the OER catalytic performance of Ni(II, III)Zn-LDH/NF-nm with other

 recently reported hydroxide-based electrocatalysts in alkaline solution.

LDH nanosheets				1701546
				Journal of Energy
NiFe-NiCoO ₂	=286	≈383	0.6	Chemistry, 2019, 33, 74-
				80
	-261		0 400	J. Mater. Chem. A,2018,
PA-CO3 _x (OH) _y	=201	-	0.400	6,24311–24316
		-222	E C	J. Am. Chem. Soc., 2017,
	-	-322	5.0	139, 8320-8328
	-208	~292	0 142	ACS Energy Lett. 2018, 3,
v _{Ni} -α-Ivi(OTT) ₂	-308	~385	0.142	1373–1380

catalyst	Overpotentia I (mV, at 10 mA cm ⁻²)	Overpotential (mV, at 100 mA cm ⁻²)	Mass loading (mg cm ⁻²)	Reference
Ni(II, III)Zn-LDH/NF- nm	=183	=300	0.107	This work
NiFe(II,III)-LDH	=120	≈310	2	Small 2019, 1902551
NiV-LDH/NF	-	=333	0.71	Nanoscale, 2019, 11, 8855-8863
Fe _{1.5} Ni _{0.5} OOH/EGSI	=228	≈310	-	ChemistrySelect, 2019, 4, 2153-2159
NiFeLDH@NiCoP/N F	≈140	≈320	2	Adv. Funct. Mater., 2018, 28, 1706847
ơ-FeOOH NSs/NF	=108	≈180	0.16	Adv. Mater. 2018, 1803144
NiFe-LDHs/NF	=145	≈300	1.42	
Ni _{0.75} Fe _{0.125} V _{0.125} - LDHs/NF	=125	≈220	1.42	Small, 2018, 14, 4724
Co ₁ Mn ₁ CH	-	=328	5.6	J. Am. Chem. Soc., 2017, 139, 8320-8328

Table S.6 Comparison of the HER catalytic performance of Ni(II, III)Zn-LDH/NF-nm with other

 recently reported hydroxide-based electrocatalysts in alkaline solution.

catalyst	Potential (mV, at 10 mA cm ⁻²)	Potential (mV, at 50 mA cm ⁻²)	Stability test (time, h)	Reference
Ni(II, III)Zn- LDH/NF-nm	=1.68	≈1.78	16 h	This work
Ni _{0.75} Fe _{0.125} V _{0.125} - LDHs/NF	=1.591	≈1.74	15 h	Small, 2018, 14, 4724
Fe _x Ni _y OOH/EGSI	=1.69	≈1.91	-	ChemistrySelect, 2019, 4, 2153-2159
NiFe LDH/NF	≈1.66	≈1.86	-	Adv. Funct. Mater., 2018, 28, 1706847
ơ-FeOOH NSs/NF	=1.62	≈1.83	60 h	Adv. Mater. 2018, 1803144
Co ₁ Mn ₁ CH	=1.68	≈1.87	13 h	J. Am. Chem. Soc., 2017, 139, 8320-8328

Table S.7 Comparison of overall water splitting performance of Ni(II, III)Zn-LDH/NF-nm to recently reported hydroxide-based electrocatalysts in alkaline solution.

References

- 1. A. Nadeema, P.S. Walko, R.N. Devi, S. Kurungot, ACS Applied Energy Materials, 2018, 1, 5500-5510.
- 2. D. Voiry, M. Chhowalla, Y. Gogotsi, N.A. Kotov, Y. Li, R.M. Penner, R.E. Schaak, P.S. Weiss, *ACS nano.*, 2018, **12**, 9635-9638.
- 3. J. Xie, X. Zhang, H. Zhang, J. Zhang, S. Li, R. Wang, B. Pan, Y. Xie, *Adv Mater.*, 2017, **29**, 1604765.
- 4. S. Shit, S. Chhetri, W. Jang, N.C. Murmu, H. Koo, P. Samanta, T. Kuila, ACS Appl Mater Inter., 2018, **10**, 27712-27722.