CNN Pincer Ruthenium Complexes for Efficient Transfer Hydrogenation of Biomass-Derived Carbonyl Compounds

Rosario Figliolia, Paolo Cavigli, Clara Comuzzi, Alessandro Del Zotto, Denise Lovison, Paolo Strazzolini, Sabina Susmel, Daniele Zuccaccia, Maurizio Ballico, Walter Baratta

Supporting Information

Table of Contents:

Figure S1. ¹H NMR spectrum of 6-(4-methoxyphenyl)pyridine-2-carbaldehyde oxime Pag. S1

Figure S2. ¹³C{¹H} NMR spectrum of 6-(4-methoxyphenyl)pyridine-2-carbaldehyde oxime

Pag. S2

Figure S3. (+)-ESI-MS and MS/MS spectra of 6-(4-methoxyphenyl)pyridine-2-carbaldehyde oxime

Pag. S3

Figure S4. ¹H NMR spectrum of (6-(4-methoxyphenyl)pyridin-2-y)methanamine (HCNN^{OMe})

Pag. S4

Figure	S5 .	$^{13}C{^{1}H}$	DEPTQ	NMR	spectrum	of	(6-(4-methoxyphenyl)pyridin-2-y)methanar	nine
(HCNN	^{OMe})						Pag. S	5

Figure S6. (+)-ESI-MS and MSⁿ spectra of (6-(4-methoxyphenyl)pyridin-2-y)methanamine (HCNN^{OMe}) Pag. S6

Figure S7. ³¹ P{ ¹ H} NMR spectrum of <i>cis</i> -[RuCl(CNN ^{OMe})(PPh ₃) ₂] (1)	Pag. S7
Figure S8. ¹ H NMR spectrum of <i>cis</i> -[RuCl(CNN ^{OMe})(PPh ₃) ₂] (1)	Pag. S8

Figure S9. ¹³C{¹H} DEPTQ NMR spectrum of cis-[RuCl(CNN^{OMe})(PPh₃)₂] (1) Pag. S9

- Figure S10. ¹³C{¹H} QUATD NMR spectrum of *cis*-[RuCl(CNN^{OMe})(PPh₃)₂] (1) Pag. S10
- Figure S11. ³¹P{¹H} NMR spectrum of [RuCl(CNN^{OMe})(dppb)] (2) Pag. S11

Figure S12.	¹ H NMR spectrum of [RuCl(CNN ^{OMe})(dppb)] (2)	Pag. S12
Figure S13.	¹³ C{ ¹ H} DEPTQ NMR spectrum of [RuCl(CNN ^{OMe})(dppb)] (2)	Pag. S13
Figure S14.	¹ H- ¹ H COSY 2D NMR spectrum of [RuCl(CNN ^{OMe})(dppb)] (2)	Pag. S14
Figure S15.	Aromatic region of the ¹ H- ¹ H COSY 2D NMR spectrum of [RuCl(CNN ^{OMe})	(dppb)] (2)
		Pag. S15
Figure S16.	Alkylic region of the ¹ H- ¹ H COSY 2D NMR spectrum of [RuCl(CNN ^{OMe})(d	lppb)] (2)
		Pag. S15
Figure S17.	¹ H- ¹ H NOESY 2D NMR spectrum of [RuCl(CNN ^{OMe})(dppb)] (2)	Pag. S16
Figure S18.	¹ H- ¹³ C HSQC 2D NMR spectrum of [RuCl(CNN ^{OMe})(dppb)] (2)	Pag. S17
Figure S19.	Aromatic region of the ¹ H- ¹³ C HSQC 2D NMR spectrum of [RuCl(CNN ^{OMe}))(dppb)] (2)
		Pag. S18
Figure S20.	Alkylic region of the ¹ H- ¹³ C HSQC 2D NMR spectrum of [RuCl(CNN ^{OMe})	(dppb)] (2)
		Pag. S18
Figure S21.	¹ H- ³¹ P HMBC 2D NMR spectrum of [RuCl(CNN ^{OMe})(dppb)] (2)	Pag. S19
Figure S22.	¹ H- ¹⁵ N HSQC 2D NMR spectrum of [RuCl(CNN ^{OMe})(dppb)] (2)	Pag. S20
Figure S23.	³¹ P{ ¹ H} NMR spectrum of [RuCl(CNN ^{OMe})(dppf)] (3)	Pag. S21
Figure S24.	¹ H NMR spectrum of [RuCl(CNN ^{OMe})(dppf)] (3)	Pag. S22
Figure S25.	¹³ C{ ¹ H} DEPTQ NMR spectrum of [RuCl(CNN ^{OMe})(dppf)] (3)	Pag. S23
Figure S26.	³¹ P{ ¹ H} NMR spectrum of [RuCl(CNN ^{OMe})(CO)(PPh ₃)] (4)	Pag. S24
Figure S27.	¹ H NMR spectrum of [RuCl(CNN ^{OMe})(CO)(PPh ₃)] (4)	Pag. S25
Figure S28.	¹³ C{ ¹ H} DEPTQ NMR spectrum of [RuCl(CNN ^{OMe})(CO)(PPh ₃)] (4)	Pag. S26
Figure S29.	³¹ P{ ¹ H} NMR spectrum of <i>trans</i> -[Ru(CNN ^{OMe})(CO)(PCy ₃)(PPh ₃)][BAr ^f ₄] ((5)
		Pag. S27

Figure S30. ¹H NMR spectrum of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5)

Pag. S28

Figure S31. ¹³C{¹H} DEPTQ NMR spectrum of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5) Pag. S29

Figure S32. ¹H-¹H COSY 2D NMR spectrum of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5) Pag. S30

Figure S33. Aromatic region of the ¹H-¹H COSY 2D NMR spectrum of trans- $[Ru(CNN^{OMe})(CO)(PCy_3)(PPh_3)][BAr^{f_4}] (5)$ Pag. S31 Figure S34. Alkylic region of the ¹H-¹H COSY 2D NMR spectrum of trans- $[Ru(CNN^{OMe})(CO)(PCv_3)(PPh_3)][BAr_4]$ (5) Pag. S31 Figure S35. ¹H-¹H NOESY 2D NMR spectrum of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5) Pag. S32 Figure S36. ¹H-¹³C HSQC 2D NMR spectrum of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5) Pag. S33 Figure S37. Alkylic region of the ¹H-¹³C HSQC 2D NMR spectrum of *trans*- $[Ru(CNN^{OMe})(CO)(PCy_3)(PPh_3)][BAr^{f_4}]$ (5) Pag. S34 Figure S38. Aromatic region of the ¹H-¹³C HSQC 2D NMR spectrum of *trans*-

Figure S39. ¹H-³¹P HMBC 2D NMR spectrum of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5) Pag. S35

Pag. S34

 $[Ru(CNN^{OMe})(CO)(PCy_3)(PPh_3)][BAr_{4}]$ (5)

Table S1. Further data regarding the catalytic TH of lignocellulose biomass carbonyl compounds to
alcohols with 2, 3, 5 (S/C = 1000-10000)Pag. S36Figure S40.1H NMR spectrum of γ -valerolactone (GVL) obtained from TH reduction of ethyl
levulinate in 2-propanol catalyzed by ruthenium pincer complexes 2, 3 and 5Pag. S37

Figure S41. GC-FID chromatograms of the reaction mixture of the TH of cinnamalder	hyde g in 2-
propanol at reflux promoted by complex 2 at S/C 1000	Pag. S38
Figure S42. ¹ H NMR spectrum of furfuryl alcohol obtained from TH of furfural	Pag. S39
Figure S43. ¹³ C{ ¹ H} NMR spectrum of furfuryl alcohol obtained from TH of furfural	Pag. S40
Figure S44. ¹ H NMR spectrum of 2,5-bis(hydroxymethyl)furan (BHMF) obtained fro	om TH of 5-
HMF	Pag. S41
Figure S45. ¹³ C{ ¹ H} DEPTQ NMR spectrum of 2,5-bis(hydroxymethyl)furan (BHM	IF) obtained
from TH of 5-HMF	Pag. S42
Figure S46. Comparison between the GC-FID chromatograms of levoglucosanol obtain	ed from TH
of Cyrene e i promoted by complex 2 (A), 3 (B) and 5 (C) at S/C 10000	Pag. S43
Figure S47. ¹ H NMR spectrum of levoglucosanol obtained from TH of Cyrene e p	promoted by
complex 2 at S/C 10000 (<i>erithro/threo</i> ratio 1/1.2)	Pag. S44
Figure S48. ¹³ C{ ¹ H} DEPTQ NMR spectrum of levoglucosanol obtained from TH	of Cyrene e
promoted by complex 2 at S/C 10000 (<i>erithro/threo</i> ratio 1/1.2)	Pag. S45
Figure S49 . GC-FID chromatogram of γ -valerolactone (GVL) obtained from TH of eth	yl levulinate
f promoted by complex 2 at S/C 1000	Pag. S46
Figure S50. ¹ H NMR spectrum of γ -valerolactone (GVL) obtained from TH of ethyl	levulinate \mathbf{f}
promoted by complex 2 at S/C 1000	Pag. S47
Figure S51 . ¹³ C{ ¹ H} DEPTQ NMR spectrum of γ -valerolactone (GVL) obtained from	TH of ethyl
levulinate f promoted by complex 2 at S/C 1000	Pag. S48
Figure S52. ¹ H NMR spectrum of cinnamyl alcohol obtained from TH of <i>trans</i> -cinnama	aldehyde g
	Pag. S49
Figure S53. ${}^{3}C{}^{1}H$ NMR spectrum of cinnamyl alcohol obtained from TH of <i>trans</i> -cinn	amaldehyde
g	Pag. S50
Figure S54. ¹ H NMR spectrum of veratryl alcohol obtained from TH of veratraldehyde	h
	Pag. S51

Figure S55. ¹H NMR spectrum of the dibenzyl alcohol obtained from TH of 4,4'-[ethane-1,2-diylbis(oxy)]bis(3-methoxybenzaldehyde) (EDOMB) iPag. S52Figure S56. ¹³C{¹H} DEPTQ NMR spectrum of the dibenzyl alcohol obtained from TH of 4,4'-[ethane-1,2-diylbis(oxy)]bis(3-methoxybenzaldehyde) (EDOMB) iPag. S53Figure S57. ¹H NMR spectrum of vanillyl alcohol obtained from TH of vanillin jPag. S54Figure S58. ¹³C{¹H} DEPTQ NMR spectrum of vanillyl alcohol obtained from TH of vanillin jPag. S54

Pag. S55

Figure S1. ¹H NMR spectrum (400.1 MHz) of 6-(4-methoxyphenyl)pyridine-2-carbaldehyde oxime in CD₃OD at 25 °C.

Figure S2. ¹³C{¹H} NMR spectrum (100.6 MHz) of 6-(4-methoxyphenyl)pyridine-2-carbaldehyde oxime in CD₃OD at 25 °C.

Figure S3. (+)-ESI-MS and MS/MS spectra of 6-(4-methoxyphenyl)pyridine-2-carbaldehyde oxime in CH₃OH

Figure S4. ¹H NMR spectrum (400.1 MHz) of (6-(4-methoxyphenyl)pyridin-2-yl)methanamine (HCNN^{OMe}) in CD₂Cl₂ at 25 °C.

Figure S5. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of (6-(4-methoxyphenyl)pyridin-2-yl)methanamine (HCNN^{OMe}) in CD₂Cl₂ at 25 °C.

Figure S6. (+)-ESI-MS and MS^n spectra of (6-(4-methoxyphenyl)pyridin-2-yl)methanamine (HCNN^{OMe}) in CH₃OH

Figure S7. ³¹P{¹H} NMR spectrum (162.0 MHz) of *cis*-[RuCl(CNN^{OMe})(PPh₃)₂] (1) in CD₂Cl₂ at 25 °C.

Figure S8. ¹H NMR spectrum (400.1 MHz) of *cis*-[RuCl(CNN^{OMe})(PPh₃)₂] (1) in CD₂Cl₂ at 25 °C.

Figure S9. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of *cis*-[RuCl(CNN^{OMe})(PPh₃)₂] (1) in $C_2D_2Cl_4$ at 25 °C.

Figure S10. ¹³C{¹H} QUATD NMR spectrum (100.6 MHz) of *cis*-[RuCl(CNN^{OMe})(PPh₃)₂] (1) in $C_2D_2Cl_4$ at 25 °C.

Figure S11. ³¹P{¹H} NMR spectrum (162.0 MHz) of [RuCl(CNN^{OMe})(dppb)] (2) in CD₂Cl₂ at 25 $^{\circ}$ C.

Figure S12. ¹H NMR spectrum (400.1 MHz) of [RuCl(CNN^{OMe})(dppb)] (2) in CD₂Cl₂ at 25 °C.

Figure S13. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of [RuCl(CNN^{OMe})(dppb)] (**2**) in CD₂Cl₂ at 25 °C.

Figure S14. ¹H-¹H COSY 2D NMR spectrum (400.1 MHz) of [RuCl(CNN^{OMe})(dppb)] (**2**) in CD₂Cl₂ at 25 °C.

Figure S15. Aromatic region of the ${}^{1}\text{H}{}^{-1}\text{H}$ COSY 2D NMR spectrum (400.1 MHz) of [RuCl(CNN^{OMe})(dppb)] (2) in CD₂Cl₂ at 25 °C.

Figure S16. Alkylic region of the ${}^{1}\text{H}{}^{-1}\text{H}$ COSY 2D NMR spectrum (400.1 MHz) of [RuCl(CNN^{OMe})(dppb)] (2) in CD₂Cl₂ at 25 °C.

Figure S17. ¹H-¹H NOESY 2D NMR spectrum (400.1 MHz) of $[RuCl(CNN^{OMe})(dppb)]$ (2) in CD_2Cl_2 at 25 °C.

Figure S18. ¹H-¹³C HSQC 2D NMR spectrum of [RuCl(CNN^{OMe})(dppb)] (2) in CD₂Cl₂ at 25 °C.

Figure S19. Aromatic region of the ¹H-¹³C HSQC 2D NMR spectrum of [RuCl(CNN^{OMe})(dppb)] (2) in CD₂Cl₂ at 25 °C.

Figure S20. Alkylic region of the ¹H-¹³C HSQC 2D NMR spectrum of [RuCl(CNN^{OMe})(dppb)] (2) in CD_2Cl_2 at 25 °C.

Figure S21. ¹H-³¹P HMBC 2D NMR spectrum of [RuCl(CNN^{OMe})(dppb)] (2) in CD₂Cl₂ at 25 °C.

Figure S22. ¹H-¹⁵N HSQC 2D NMR spectrum of [RuCl(CNN^{OMe})(dppb)] (2) in CD₂Cl₂ at 25 °C.

Figure S23. ³¹P{¹H} NMR spectrum (162.0 MHz) of [RuCl(CNN^{OMe})(dppf)] (3) in CD₂Cl₂ at 25 $^{\circ}$ C.

Figure S24. ¹H NMR spectrum (400.1 MHz) of [RuCl(CNN^{OMe})(dppf)] (3) in CD₂Cl₂ at 25 °C.

Figure S25. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of [RuCl(CNN^{OMe})(dppf)] (3) in CD₂Cl₂ at 25 °C.

Figure S26. ³¹P{¹H} NMR spectrum (162.0 MHz) of [RuCl(CNN^{OMe})(CO)(PPh₃)] (4) in CD₂Cl₂ at 25 °C.

Figure S27. ¹H NMR spectrum (400.1 MHz) of $[RuCl(CNN^{OMe})(CO)(PPh_3)]$ (4) in CD₂Cl₂ at 25 °C.

Figure S28. ¹³C{¹H} NMR spectrum (100.6 MHz) of [RuCl(CNN^{OMe})(CO)(PPh₃)] (**4**) in CD₂Cl₂ at 25 °C.

Figure S29. ³¹P{¹H} NMR spectrum (162.0 MHz) of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5) in CD₂Cl₂ at 25 °C.

Figure S30. ¹H NMR spectrum (400.1 MHz) of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (**5**) in CD₂Cl₂ at 25 °C.

Figure S31. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of *trans*- $[Ru(CNN^{OMe})(CO)(PCy_3)(PPh_3)][BAr^{f_4}]$ (5) in CD₂Cl₂ at 25 °C.

Figure S32. ¹H-¹H COSY 2D NMR spectrum (400.1 MHz) of *trans*- $[Ru(CNN^{OMe})(CO)(PCy_3)(PPh_3)][BAr^{f_4}]$ (5) in CD₂Cl₂ at 25 °C.

Figure S33. Aromatic region of the ${}^{1}H{}^{1}H$ COSY 2D NMR spectrum (400.1 MHz) of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (**5**) in CD₂Cl₂ at 25 °C.

Figure S34. Alkylic region of the ¹H-¹H COSY 2D NMR spectrum (400.1 MHz) of *trans*- $[Ru(CNN^{OMe})(CO)(PCy_3)(PPh_3)][BAr^{f_4}]$ (5) in CD₂Cl₂ at 25 °C.

Figure S35. ${}^{1}\text{H}{}^{-1}\text{H}$ NOESY 2D NMR spectrum (400.1 MHz) of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5) in CD₂Cl₂ at 25 °C.

Figure S36. ¹H-¹³C HSQC 2D NMR spectrum of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (**5**) in CD₂Cl₂ at 25 °C.

Figure S37. Alkylic region of the ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC 2D NMR spectrum of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (**5**) in CD₂Cl₂ at 25 °C.

Figure S38. Aromatic region of the ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC 2D NMR spectrum of *trans*- $[\text{Ru}(\text{CNN}^{\text{OMe}})(\text{CO})(\text{PCy}_{3})(\text{PPh}_{3})][\text{BAr}^{f}_{4}]$ (5) in CD₂Cl₂ at 25 °C.

Figure S39. ¹H-³¹P HMBC 2D NMR of *trans*-[Ru(CNN^{OMe})(CO)(PCy₃)(PPh₃)][BAr^f₄] (5) in CD₂Cl₂ at 25 °C.

Entury	Substrate Complex		S/C		Time	Conv. ^[b]	Alcohol	By-prod.
Entry				Dase	[min]	[%]	[%]	[%]
1	b	2	1000	NaO <i>i</i> Pr	5	97	97	-
2	b	2	10000	K_2CO_3	24 h	47	47	-
3	c	3	1000	NaOiPr	1	99 ^[c]	98	<1
4	d	3	1000	K_2CO_3	180	60 ^[c]	4	56 ^[d]
5	f	3	10000	K_2CO_3	30	64	62 ^[e]	$2^{[f]}$
6	g	2	1000	K_2CO_3	5	98	96	2 ^[g]
7	g	2	1000	K_2CO_3	60	98	63	35 ^[g]
8	g	3	1000	K_2CO_3	10	98	95	3 ^[g]
9	g	5	1000	K_2CO_3	15	99	94	5 ^[g]
10	h	5	1000	K_2CO_3	5	99 ^[c]	98	<1
11	h	5	10000	K_2CO_3	20	99 ^[c]	90	9 ^[h]
12	i	2	1000	NaO <i>i</i> Pr	60	99 ^[c]	97	$2^{[i]}$
13	i	3	1000	NaOiPr	1	99 ^[c]	99	-

Table S1. Further data regarding the catalytic TH of lignocellulose biomass carbonyl compounds (0.1 M) to alcohols with **2**, **3**, **5** (S/C = 1000-10000) in 2-propanol at 82 °C.

^aBase: NaO*i*Pr (2 mol%) or K₂CO₃ (5 mol%). ^bConversions have been determined by GC analyses. ^cConversions have been determined by NMR analyses. ^d5-(hydroxymethyl)furfural (5-HMF). ^{eo}% of γ -valerolactone (GVL). ^fisopropyl 4-hydroxypentanoate. ^g3-phenylpropan-1-ol. ^h4-(isopropoxymethyl)-1,2-dimethoxybenzene. ⁱ4-(2-(4-(hydroxymethyl)-2-methoxyphenoxy)ethoxy)-3-methoxybenzaldehyde.

Figure S40. ¹H NMR spectrum (400.1 MHz) in CDCl₃ at 25 °C of γ -valerolactone (GVL) obtained from TH reduction of ethyl levulinate in 2-propanol catalyzed by ruthenium pincer complexes **2**, **3** and **5**.

Figure S41. GC-FID chromatograms of the reaction mixture of the TH of cinnamaldehyde **g** in 2-propanol at reflux promoted by complex **2** at S/C 1000 after 5 min (A) and 1 h (B).

Figure S42. ¹H NMR spectrum (400.1 MHz) of furfuryl alcohol obtained from TH of furfural in $CDCl_3$ at 25 °C.

¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 7.38 (m, 1H; aromatic proton), 6.33 (dd, ³*J*_{HH} = 3.2 Hz, ³*J*_{HH} = 1.8 Hz, 1H; aromatic proton), 6.27 (d, ³*J*_{HH} = 3.2 Hz, 1H; aromatic proton), 4.57 (s, 2H; CH₂), 2.38 ppm (s, 2H; OH).

Figure S43. ¹³C{¹H}NMR spectrum (100.6 MHz) of furfuryl alcohol obtained from TH of furfural in CDCl₃ at 25 °C.

¹³C{¹H} NMR (100.6 MHz, CDCl₃, 25 °C): δ = 154.1 (s; ipso aromatic carbon), 142.6 (s; aromatic carbon atom), 110.4 (s; aromatic carbon atom), 107.7 (s; aromatic carbon atom), 57.3 ppm (s; CH₂).

Figure S44. ¹H NMR spectrum (400.1 MHz) of 2,5-bis(hydroxymethyl)furan (BHMF) obtained from TH of 5-HMF in CDCl₃ at 25 °C.

¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 6.27 (s, 2H; aromatic protons), 4.62 (s, 4H; CH₂), 1.85 ppm (s, 2H; OH).

Figure S45. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of 2,5-bis(hydroxymethyl)furan (BHMF) obtained from TH of 5-HMF in CDCl₃ at 25 °C.

¹³C{¹H} NMR (100.6 MHz, CDCl₃, 25 °C): δ = 154.1 (s; CCH₂), 108.5 (s; CH), 57.3 ppm(s; CH₂).

Figure S46. Comparison between the GC-FID chromatograms of levoglucosanol obtained from TH of Cyrene e in 2-propanol at reflux and NaO*i*Pr 2 mol% promoted by complex **2** (A), **3** (B) and **5** (C) at S/C 10000.

Figure S47. ¹H NMR spectrum (400.1 MHz) of levoglucosanol obtained from TH of Cyrene **e** promoted by complex **2** at S/C 10000 (*erithro/threo* ratio 1/1.2) in CDCl₃ at 25 °C.

¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 5.29 (s, 1H; CH(O)O), 4.47 (br s, 1H; CH₂C*H*(O)CH₂), 3.91-3.75 (m, 2H; OCH₂), 3.57 (m, 1H; C*H*OH), 2.52 (s, 1H; OH), 2.14-1.79 (m, 2H; CHC*H*₂CH₂), 1.67-1.35 ppm (m, 2H; CHCH₂C*H*₂).

Figure S48. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of levoglucosanol obtained from TH of Cyrene e promoted by complex 2 at S/C 10000 (*erithro/threo* ratio 1/1.2) in CDCl₃ at 25 °C.

¹³C {¹H} NMR (100.6 MHz, CDCl₃, 25 °C): $\delta = 103.0$ (s; CH(O)O *threo* isomer), 102.1 (s; CH(O)O *erithro* isomer), 73.3 (s; CH₂CH(O)CH₂ *erithro* isomer), 72.8 (s; CH₂CH(O)CH₂ *threo* isomer), 69.0 (s; CHOH *threo* isomer), 68.2 (s; OCH₂ *threo* isomer), 66.8 (s; OCH₂ *erithro* isomer), 66.7 (s; CHOH *erithro* isomer), 27.8 (s; CHCH₂CH₂ *threo* isomer), 25.9 (s; CHCH₂CH₂ *threo* isomer), 24.8 (s; CHCH₂CH₂ *erithro* isomer), 23.3 ppm (s; CHCH₂CH₂ *erithro* isomer).

Figure S49. GC-FID chromatogram of γ -valerolactone (GVL) obtained from TH of ethyl levulinate **f** in 2-propanol at reflux and K₂CO₃ 5 mol% promoted by complex **2** at S/C 1000.

Figure S50. ¹H NMR spectrum (400.1 MHz) of γ -valerolactone (GVL) obtained from TH of ethyl levulinate **f** in CDCl₃ at 25 °C.

¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 4.65 (dt, ³*J*_{HH} = 7.8 Hz, ³*J*_{HH} = 6.3Hz, 1H; C*H*CH₃), 2.60-2.52 (m, 2H; CH₂CH₂CO), 2.43-2.29 (m, 1H; C*H*₂CH₂CO), 1.91-1.76 (m, 1H; C*H*₂CH₂CO), 1.42 ppm (d, ³*J*_{HH} = 6.2 Hz, 3H; CH₃).

Figure S51. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of γ -valerolactone (GVL) obtained from TH of ethyl levulinate **f** in CDCl₃ at 25 °C.

¹³C{¹H} NMR (100.6 MHz, CDCl₃, 25 °C): δ = 177.3 (s; CO), 77.3 (s; CHCH₃), 29.7 (s; CHCH₂), 29.1 (s; CH₂CO), 21.1 ppm (s; CH₃).

Figure S52. ¹H NMR spectrum (400.1 MHz) of cinnamyl alcohol obtained from TH of *trans*cinnamaldehyde **g** in CDCl₃ at 25 °C.

¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 7.41 (d, ³*J*_{HH} = 7.5 Hz, 2H; aromatic protons), 7.37-7.17 (m, 3H; aromatic protons), 6.64 (d, ³*J*_{HH} = 15.9 Hz, 1H; PhC*H*=CH), 6.38 (dt, ³*J*_{HH} = 15.9 Hz, ³*J*_{HH} = 5.7 Hz, ³*J*_{HH} = 1.3 Hz, 2H; CH₂), 1.89 ppm (br s, 1H; OH).

Figure S53. ¹³C{¹H} NMR spectrum (100.6 MHz) of cinnamyl alcohol obtained from TH of *trans*cinnamaldehyde **g** in CDCl₃ at 25 °C.

¹³C{¹H} NMR (100.6 MHz, CDCl₃, 25 °C): $\delta = 136.7$ (s; aromatic ipso carbon), 131.1 (s; Ph*C*H=CH), 128.6 (s; PhCH=CH), 128.7-125.9 (m; aromatic carbon atoms), 63.7 ppm (s; *C*H₂).

Figure S54. ¹H NMR spectrum (400.1 MHz) of veratryl alcohol obtained from TH of veratraldehyde **h** in DMSO-d₆ at 25 °C.

¹H NMR (400 MHz, DMSO-d₆, 25 °C): $\delta = 6.92$ (br d, ³*J*_{HH} = 1.8 Hz, 1H; aromatic proton), 6.89 (d, ³*J*_{HH} = 8.1 Hz, 1H; aromatic proton), 6.82 (dd, ³*J*_{HH} = 8.1 Hz, ³*J*_{HH} = 1.8 Hz, 1H; aromatic proton), 5.06 (t, ³*J*_{HH} = 5.7 Hz, 1H; OH), 4.42 (d, ³*J*_{HH} = 5.7 Hz, 2H; C*H*₂OH), 3.75 (s, 3H; OCH₃), 3.73 ppm (s, 3H; OCH₃).

Figure S55. ¹H NMR spectrum (400.1 MHz) of the dibenzyl alcohol obtained from TH of 4,4'-[ethane-1,2-diylbis(oxy)]bis(3-methoxybenzaldehyde) (EDOMB) **i** in CDCl₃ at 25 °C.

¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 6.98 (m, 4H; aromatic protons), 6.90 (m, 2H; aromatic protons), 4.65 (s, 4H; OCH₂CH₂O), 4.44 (s, 4H; CH₂OH), 3.90 (s, 6H; OCH₃), 1.60 ppm (br s, 4H; OH).

Figure S56. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of the dibenzyl alcohol obtained from TH of 4,4'-[ethane-1,2-diylbis(oxy)]bis(3-methoxybenzaldehyde) (EDOMB) **i** in CDCl₃ at 25 °C.

 ${}^{3}C{}^{1}H}$ NMR (100.6 MHz, CDCl₃, 25 °C): δ = 151.4 (s; aromatic ipso carbon), 148.6 (s; aromatic ipso carbon), 118.6 (s; aromatic ipso carbon), 119.4-111.2 (m; aromatic carbon atoms), 67.8 (s; OCH₂CH₂O), 65.3 (s; CH₂OH), 56.0 ppm (s; OCH₃).

Figure S57. ¹H NMR spectrum (400.1 MHz) of vanillyl alcohol obtained from TH of vanillin **j** in DMSO-d₆ at 25 °C.

¹H NMR (400 MHz, DMSO-d₆, 25 °C): δ = 6.86 (br d, ³*J*_{HH} = 1.3 Hz, 1H; aromatic proton), 6.73-6.65 (m, 2H; aromatic protons), 4.37 (s, 2H; C*H*₂OH), 3.75 ppm (s, 3H; CH₃O).

Figure S58. ¹³C{¹H} DEPTQ NMR spectrum (100.6 MHz) of vanilly alcohol obtained from TH of vanillin **j** in DMSO-d₆ at 25 °C.

¹³C{¹H} NMR (100.6 MHz, DMSO-d₆, 25 °C): δ = 148.0 (s; aromatic ipso carbon), 146.8 (s; aromatic ipso carbon), 133.1 (s; aromatic ipso carbon), 119.7 (s; aromatic carbon), 115.6 (s; aromatic carbon), 111.6 (s; aromatic carbon), 63.5 (s; CH₂O), 56.0 ppm (s; CH₃O).