Supplementary Information

Photoelectrochemical water-splitting over a surface-modified p-

type Cr₂O₃ photocathode

Keita Sekizawa,* Keiichiro Oh-ishi, and Takeshi Morikawa

Toyota Central R&D Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan)

Figure S1 Structure of α -Cr₂O₃. The blue and red spheres are chromium and oxygen atoms, respectively. The light blue octahedrons are oxygen octahedral occupied by chromium. Asterisks are some examples of unoccupied octahedral sites.

Figure S2 UV/Visible diffuse reflectance spectra of Cr_2O_3 (blue line) and TiO_2 (black line) reference bulk powders. Although Cr_2O_3 powder exhibited an absorption band with a peak at 460 nm due to highdensity defects, the absorption band below 410 nm is attributed to the band-gap excitation⁵²⁻⁵⁴.

Figure S3. Photocurrent–potential characteristics for bare Cr_2O_3 before (black line) and after (red line) the 1h photoelectrolysis at +0.11 V vs. RHE in a 0.5 M Na₂CO₃–NaHCO₃ (1 : 1) buffer electrolyte (pH 9.7) under chopped one sun (100 mW cm⁻², AM 1.5) illumination.

Figure S4 UV/Visible absorption spectra obtained from $Pt/TiO_2/Cr_2O_3$ electrodes at various wavelengths using different TiO₂ layer thicknesses (10 nm; purple, 30 nm; blue, 60 nm; green, 80 nm; yellow and 120 nm; red).

Figure S5 Cross-sectional STEM images and STEM-EDX elemental maps for $Pt/TiO_2/Cr_2O_3$ with 10 nm TiO₂ thickness.

Figure S6 Time course of photocurrent for PEC water splitting under one sun (AM 1.5) irradiation with applying bias at +0.11 V vs. RHE for Pt/TiO₂/Cr₂O₃ (red line), bare Cr₂O₃ (black line), TiO₂/Cr₂O₃ (blue line) and Pt/Cr₂O₃ (green line). The reaction was carried out in a 0.5 M Na₂CO₃-NaHCO₃ (1:1) aqueous solution.